Batch cfg DiT forward

This commit is contained in:
starkwj
2025-06-11 09:03:30 +00:00
parent 0914170e98
commit b1a9438496
2 changed files with 57 additions and 23 deletions

View File

@@ -185,23 +185,7 @@ class DiT(nn.Module):
def clear_cache(self):
self.text_cond, self.text_uncond = None, None
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
cache=False,
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning time, text: text, x: noised audio + cond audio + text
t = self.time_embed(time)
def get_text_embed(self, text, seq_len, drop_text, cache):
if cache:
if drop_text:
if self.text_uncond is None:
@@ -213,7 +197,41 @@ class DiT(nn.Module):
text_embed = self.text_cond
else:
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
return text_embed
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
batch_cfg=False, # batch cfg compute
mask: bool["b n"] | None = None, # noqa: F722
cache=False,
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
# t: conditioning time, text: text, x: noised audio + cond audio + text
t = self.time_embed(time)
if batch_cfg:
text_embed_cond = self.get_text_embed(
text, seq_len, drop_text=False, cache=cache
)
text_embed_uncond = self.get_text_embed(
text, seq_len, drop_text=True, cache=cache
)
x_cond = self.input_embed(x, cond, text_embed_cond, drop_audio_cond=False)
x_uncond = self.input_embed(
x, cond, text_embed_uncond, drop_audio_cond=True
)
x = torch.cat((x_cond, x_uncond), dim=0)
else:
text_embed = self.get_text_embed(text, seq_len, drop_text, cache)
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
rope = self.rotary_embed.forward_from_seq_len(seq_len)

View File

@@ -163,15 +163,31 @@ class CFM(nn.Module):
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
# predict flow
pred = self.transformer(
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False, cache=True
)
if cfg_strength < 1e-5:
pred = self.transformer(
x=x,
cond=step_cond,
text=text,
time=t,
mask=mask,
drop_audio_cond=False,
drop_text=False,
cache=True,
)
return pred
null_pred = self.transformer(
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True, cache=True
pred_and_null = self.transformer(
x=x,
cond=step_cond,
text=text,
time=t,
mask=mask,
drop_audio_cond=False,
drop_text=False,
batch_cfg=True,
cache=True,
)
pred, null_pred = torch.chunk(pred_and_null, 2, dim=0)
return pred + (pred - null_pred) * cfg_strength
# noise input