mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-12 15:50:07 -08:00
This commit is contained in:
@@ -4,11 +4,20 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import tensorrt as trt
|
import tensorrt as trt
|
||||||
from tensorrt_llm._common import default_net
|
from tensorrt_llm._common import default_net
|
||||||
|
|
||||||
from ..._utils import str_dtype_to_trt
|
from ..._utils import str_dtype_to_trt
|
||||||
from ...functional import Tensor, concat
|
from ...functional import (
|
||||||
|
Tensor,
|
||||||
|
concat,
|
||||||
|
constant,
|
||||||
|
expand,
|
||||||
|
shape,
|
||||||
|
slice,
|
||||||
|
unsqueeze,
|
||||||
|
)
|
||||||
from ...layers import Linear
|
from ...layers import Linear
|
||||||
from ...module import Module, ModuleList
|
from ...module import Module, ModuleList
|
||||||
from ...plugin import current_all_reduce_helper
|
from ...plugin import current_all_reduce_helper
|
||||||
@@ -27,9 +36,9 @@ class InputEmbedding(Module):
|
|||||||
self.proj = Linear(mel_dim * 2 + text_dim, out_dim)
|
self.proj = Linear(mel_dim * 2 + text_dim, out_dim)
|
||||||
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
||||||
|
|
||||||
def forward(self, x, cond):
|
def forward(self, x, cond, mask=None):
|
||||||
x = self.proj(concat([x, cond], dim=-1))
|
x = self.proj(concat([x, cond], dim=-1))
|
||||||
return self.conv_pos_embed(x) + x
|
return self.conv_pos_embed(x, mask=mask) + x
|
||||||
|
|
||||||
|
|
||||||
class F5TTS(PretrainedModel):
|
class F5TTS(PretrainedModel):
|
||||||
@@ -69,10 +78,26 @@ class F5TTS(PretrainedModel):
|
|||||||
input_lengths,
|
input_lengths,
|
||||||
scale=1.0,
|
scale=1.0,
|
||||||
):
|
):
|
||||||
|
if default_net().plugin_config.remove_input_padding:
|
||||||
|
mask = None
|
||||||
|
else:
|
||||||
|
N = shape(noise, 1)
|
||||||
|
B = shape(noise, 0)
|
||||||
|
seq_len_2d = concat([1, N])
|
||||||
|
max_position_embeddings = 4096
|
||||||
|
# create position ids
|
||||||
|
position_ids_buffer = constant(np.expand_dims(np.arange(max_position_embeddings).astype(np.int32), 0))
|
||||||
|
tmp_position_ids = slice(position_ids_buffer, starts=[0, 0], sizes=seq_len_2d)
|
||||||
|
tmp_position_ids = expand(tmp_position_ids, concat([B, N])) # [B, N]
|
||||||
|
tmp_input_lengths = unsqueeze(input_lengths, 1) # [B, 1]
|
||||||
|
tmp_input_lengths = expand(tmp_input_lengths, concat([B, N])) # [B, N]
|
||||||
|
mask = tmp_position_ids < tmp_input_lengths # [B, N]
|
||||||
|
mask = mask.cast("int32")
|
||||||
|
|
||||||
t = self.time_embed(time)
|
t = self.time_embed(time)
|
||||||
x = self.input_embed(noise, cond)
|
x = self.input_embed(noise, cond, mask=mask)
|
||||||
for block in self.transformer_blocks:
|
for block in self.transformer_blocks:
|
||||||
x = block(x, t, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale)
|
x = block(x, t, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale, mask=mask)
|
||||||
denoise = self.proj_out(self.norm_out(x, t))
|
denoise = self.proj_out(self.norm_out(x, t))
|
||||||
denoise.mark_output("denoised", self.dtype)
|
denoise.mark_output("denoised", self.dtype)
|
||||||
return denoise
|
return denoise
|
||||||
|
|||||||
@@ -16,7 +16,6 @@ from ...functional import (
|
|||||||
chunk,
|
chunk,
|
||||||
concat,
|
concat,
|
||||||
constant,
|
constant,
|
||||||
expand,
|
|
||||||
expand_dims,
|
expand_dims,
|
||||||
expand_dims_like,
|
expand_dims_like,
|
||||||
expand_mask,
|
expand_mask,
|
||||||
@@ -95,15 +94,24 @@ class ConvPositionEmbedding(Module):
|
|||||||
self.conv1d2 = Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2)
|
self.conv1d2 = Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2)
|
||||||
self.mish = Mish()
|
self.mish = Mish()
|
||||||
|
|
||||||
def forward(self, x, mask=None): # noqa: F722
|
def forward(self, x, mask=None):
|
||||||
if default_net().plugin_config.remove_input_padding:
|
if default_net().plugin_config.remove_input_padding:
|
||||||
x = unsqueeze(x, 0)
|
x = unsqueeze(x, 0)
|
||||||
x = permute(x, [0, 2, 1])
|
if mask is not None:
|
||||||
x = self.mish(self.conv1d2(self.mish(self.conv1d1(x))))
|
mask = mask.view(concat([shape(mask, 0), 1, shape(mask, 1)])) # [B 1 N]
|
||||||
out = permute(x, [0, 2, 1])
|
mask = expand_dims_like(mask, x) # [B D N]
|
||||||
|
mask = cast(mask, x.dtype)
|
||||||
|
x = permute(x, [0, 2, 1]) # [B D N]
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
x = self.mish(self.conv1d2(self.mish(self.conv1d1(x * mask) * mask)) * mask)
|
||||||
|
else:
|
||||||
|
x = self.mish(self.conv1d2(self.mish(self.conv1d1(x))))
|
||||||
|
|
||||||
|
x = permute(x, [0, 2, 1]) # [B N D]
|
||||||
if default_net().plugin_config.remove_input_padding:
|
if default_net().plugin_config.remove_input_padding:
|
||||||
out = squeeze(out, 0)
|
x = squeeze(x, 0)
|
||||||
return out
|
return x
|
||||||
|
|
||||||
|
|
||||||
class Attention(Module):
|
class Attention(Module):
|
||||||
@@ -185,6 +193,7 @@ class Attention(Module):
|
|||||||
rope_cos,
|
rope_cos,
|
||||||
rope_sin,
|
rope_sin,
|
||||||
input_lengths,
|
input_lengths,
|
||||||
|
mask=None,
|
||||||
c=None, # context c
|
c=None, # context c
|
||||||
scale=1.0,
|
scale=1.0,
|
||||||
rope=None,
|
rope=None,
|
||||||
@@ -283,6 +292,7 @@ class AttnProcessor:
|
|||||||
input_lengths,
|
input_lengths,
|
||||||
scale=1.0,
|
scale=1.0,
|
||||||
rope=None,
|
rope=None,
|
||||||
|
mask=None,
|
||||||
) -> torch.FloatTensor:
|
) -> torch.FloatTensor:
|
||||||
query = attn.to_q(x)
|
query = attn.to_q(x)
|
||||||
key = attn.to_k(x)
|
key = attn.to_k(x)
|
||||||
@@ -295,20 +305,8 @@ class AttnProcessor:
|
|||||||
inner_dim = key.shape[-1]
|
inner_dim = key.shape[-1]
|
||||||
norm_factor = math.sqrt(attn.attention_head_size)
|
norm_factor = math.sqrt(attn.attention_head_size)
|
||||||
q_scaling = 1.0 / norm_factor
|
q_scaling = 1.0 / norm_factor
|
||||||
mask = None
|
if default_net().plugin_config.remove_input_padding:
|
||||||
if not default_net().plugin_config.remove_input_padding:
|
mask = None
|
||||||
N = shape(x, 1)
|
|
||||||
B = shape(x, 0)
|
|
||||||
seq_len_2d = concat([1, N])
|
|
||||||
max_position_embeddings = 4096
|
|
||||||
# create position ids
|
|
||||||
position_ids_buffer = constant(np.expand_dims(np.arange(max_position_embeddings).astype(np.int32), 0))
|
|
||||||
tmp_position_ids = slice(position_ids_buffer, starts=[0, 0], sizes=seq_len_2d)
|
|
||||||
tmp_position_ids = expand(tmp_position_ids, concat([B, N])) # BxL
|
|
||||||
tmp_input_lengths = unsqueeze(input_lengths, 1) # Bx1
|
|
||||||
tmp_input_lengths = expand(tmp_input_lengths, concat([B, N])) # BxL
|
|
||||||
mask = tmp_position_ids < tmp_input_lengths # BxL
|
|
||||||
mask = mask.cast("int32")
|
|
||||||
|
|
||||||
if default_net().plugin_config.bert_attention_plugin:
|
if default_net().plugin_config.bert_attention_plugin:
|
||||||
qkv = concat([query, key, value], dim=-1)
|
qkv = concat([query, key, value], dim=-1)
|
||||||
@@ -393,14 +391,15 @@ class DiTBlock(Module):
|
|||||||
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout)
|
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, x, t, rope_cos, rope_sin, input_lengths, scale=1.0, rope=ModuleNotFoundError
|
self, x, t, rope_cos, rope_sin, input_lengths, scale=1.0, rope=ModuleNotFoundError, mask=None
|
||||||
): # x: noised input, t: time embedding
|
): # x: noised input, t: time embedding
|
||||||
# pre-norm & modulation for attention input
|
# pre-norm & modulation for attention input
|
||||||
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
||||||
# attention
|
# attention
|
||||||
# norm ----> (2,1226,1024)
|
# norm ----> (2,1226,1024)
|
||||||
attn_output = self.attn(x=norm, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale)
|
attn_output = self.attn(
|
||||||
|
x=norm, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale, mask=mask
|
||||||
|
)
|
||||||
# process attention output for input x
|
# process attention output for input x
|
||||||
if default_net().plugin_config.remove_input_padding:
|
if default_net().plugin_config.remove_input_padding:
|
||||||
x = x + gate_msa * attn_output
|
x = x + gate_msa * attn_output
|
||||||
|
|||||||
@@ -73,7 +73,7 @@ fi
|
|||||||
|
|
||||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
echo "TRT-LLM: offline decoding benchmark test"
|
echo "TRT-LLM: offline decoding benchmark test"
|
||||||
batch_size=1
|
batch_size=2
|
||||||
split_name=wenetspeech4tts
|
split_name=wenetspeech4tts
|
||||||
backend_type=trt
|
backend_type=trt
|
||||||
log_dir=./tests/benchmark_${model}_batch_size_${batch_size}_${split_name}_${backend_type}
|
log_dir=./tests/benchmark_${model}_batch_size_${batch_size}_${split_name}_${backend_type}
|
||||||
|
|||||||
Reference in New Issue
Block a user