Files
basic-computer-games/55_Life/rust/src/main.rs
2022-10-11 22:18:32 -04:00

276 lines
9.8 KiB
Rust

// Rust implementation of the "Basic Computer Games" version of Conway's Life
//
// Jon Fetter-Degges
// October 2022
// I am a Rust newbie. Corrections and suggestions are welcome.
use std::{cmp, fmt, io, thread, time};
// The BASIC implementation uses integers to represent the state of each cell: 1 is
// alive, 2 is about to die, 3 is about to be born, 0 is dead. Here, we'll use an enum
// instead.
// Deriving Copy (which requires Clone) allows us to use this enum value in assignments,
// and deriving Eq (or PartialEq) allows us to use the == operator. These need to be
// explicitly specified because some enums may have associated data that makes copies and
// comparisons more complicated or expensive.
#[derive(Clone, Copy, PartialEq, Eq)]
enum CellState {
Empty,
Alive,
AboutToDie,
AboutToBeBorn,
}
// Support direct printing of the cell. In this program cells will only be Alive or Empty
// when they are printed.
impl fmt::Display for CellState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let rep = match *self {
CellState::Empty => ' ',
CellState::Alive => '*',
CellState::AboutToDie => 'o',
CellState::AboutToBeBorn => '.',
};
write!(f, "{}", rep)
}
}
// Following the BASIC implementation, we will bound the board at 24 rows x 70 columns.
// The board is an array of CellState. Using an array of arrays gives us bounds checking
// in both dimensions.
const HEIGHT: usize = 24;
const WIDTH: usize = 70;
struct Board {
cells: [[CellState; WIDTH]; HEIGHT],
min_row: usize,
max_row: usize,
min_col: usize,
max_col: usize,
population: usize,
generation: usize,
invalid: bool,
}
impl Board {
fn new() -> Board {
Board {
cells: [[CellState::Empty; WIDTH]; HEIGHT],
min_row: 0,
max_row: 0,
min_col: 0,
max_col: 0,
population: 0,
generation: 0,
invalid: false,
}
}
}
fn main() {
println!(); println!(); println!();
println!("{:33}{}", " ", "Life");
println!("{:14}{}", " ", "Creative Computing Morristown, New Jersey");
println!("Enter your pattern: ");
let mut board = parse_pattern(get_pattern());
loop {
finish_cell_transitions(&mut board);
print_board(&board);
mark_cell_transitions(&mut board);
if board.population == 0 {
break; // this isn't in the original implementation but it seemed better than
// spewing blank screens
}
delay();
}
}
fn get_pattern() -> Vec<Vec<char>> {
let max_line_len = WIDTH - 4;
let max_line_count = HEIGHT - 4;
let mut lines = Vec::new();
loop {
let mut line = String::new();
// read_line reads into the buffer (appending if it's not empty). It returns the
// number of characters read, including the newline. This will be 0 on EOF.
// unwrap() will panic and terminate the program if there is an error reading
// from stdin. That's reasonable behavior in this case.
let nread = io::stdin().read_line(&mut line).unwrap();
let line = line.trim_end();
if nread == 0 || line.eq_ignore_ascii_case("DONE") {
return lines;
}
// Handle Unicode by converting the string to a vector of characters up front. We
// do this here because we check the number of characters several times, so we
// might as well just do the Unicode parsing once.
let line = Vec::from_iter(line.chars());
if line.len() > max_line_len {
println!("Line too long - the maximum is {max_line_len} characters.");
continue;
}
lines.push(line);
if lines.len() == max_line_count {
println!("Maximum line count reached. Starting simulation.");
return lines;
}
}
}
fn parse_pattern(rows: Vec<Vec<char>>) -> Board {
// This function assumes that the input pattern in rows is in-bounds. If the pattern
// is too large, this function will panic. get_pattern checks the size of the input,
// so it is safe to call this function with its results.
let mut board = Board::new();
// The BASIC implementation puts the pattern roughly in the center of the board,
// assuming that there are no blank rows at the beginning or end, or blanks entered
// at the beginning or end of every row. It wouldn't be hard to check for that, but
// for now we'll preserve the original behavior.
let nrows = rows.len();
// If rows is empty, the call to max will return None. The unwrap_or then provides a
// default value
let ncols = rows.iter().map(|l| l.len()).max().unwrap_or(0);
// The min and max values here are unsigned. If nrows >= 24 or ncols >= 68, these
// assignments will panic - they do not wrap around unless we use a function with
// that specific behavior. Again, we expect bounds checking on the input before this
// function is called.
board.min_row = 11 - nrows / 2;
board.min_col = 33 - ncols / 2;
board.max_row = board.min_row + nrows - 1;
board.max_col = board.min_col + ncols - 1;
// Loop over the rows provided. enumerate() augments the iterator with an index.
for (row_index, pattern) in rows.iter().enumerate() {
let row = board.min_row + row_index;
// Now loop over the non-empty cells in the current row. filter_map takes a
// closure that returns an Option. If the Option is None, filter_map filters out
// that entry from the for loop. If it's Some(x), filter_map executes the loop
// body with the value x.
for col in pattern.iter().enumerate().filter_map(|(col_index, chr)| {
if *chr == ' ' || (*chr == '.' && col_index == 0) {
None
} else {
Some(board.min_col + col_index)
}
}) {
board.cells[row][col] = CellState::Alive;
board.population += 1;
}
}
board
}
fn finish_cell_transitions(board: &mut Board) {
// In the BASIC implementation, this happens in the same loop that prints the board.
// We're breaking it out to improve separation of concerns.
let mut min_row = HEIGHT - 1;
let mut max_row = 0usize;
let mut min_col = WIDTH - 1;
let mut max_col = 0usize;
for row_index in board.min_row-1..=board.max_row+1 {
let mut any_alive_this_row = false;
for col_index in board.min_col-1..=board.max_col+1 {
let cell = &mut board.cells[row_index][col_index];
if *cell == CellState::AboutToBeBorn {
*cell = CellState::Alive;
board.population += 1;
} else if *cell == CellState::AboutToDie {
*cell = CellState::Empty;
board.population -= 1;
}
if *cell == CellState::Alive {
any_alive_this_row = true;
min_col = cmp::min(min_col, col_index);
max_col = cmp::max(max_col, col_index);
}
}
if any_alive_this_row {
min_row = cmp::min(min_row, row_index);
max_row = cmp::max(max_row, row_index);
}
}
// If anything is alive within two cells of the boundary, mark the board invalid and
// clamp the bounds. We need a two-cell margin because we'll count neighbors on cells
// one space outside the min/max, and when we count neighbors we go out by an
// additional space.
if min_row < 2 {
min_row = 2;
board.invalid = true;
}
if max_row > HEIGHT - 3 {
max_row = HEIGHT - 3;
board.invalid = true;
}
if min_col < 2 {
min_col = 2;
board.invalid = true;
}
if max_col > WIDTH - 3 {
max_col = WIDTH - 3;
board.invalid = true;
}
board.min_row = min_row;
board.max_row = max_row;
board.min_col = min_col;
board.max_col = max_col;
}
fn print_board(board: &Board) {
println!(); println!(); println!();
print!("Generation: {} Population: {}", board.generation, board.population);
if board.invalid {
print!(" Invalid!");
}
println!();
for row_index in 0..HEIGHT {
for col_index in 0..WIDTH {
// This print uses the Display implementation for cell_state, above.
print!("{}", board.cells[row_index][col_index]);
}
println!();
}
}
fn count_neighbors(board: &Board, row_index: usize, col_index: usize) -> i32 {
// Simply loop over all the immediate neighbors of a cell. We assume that the row and
// column indices are not on (or outside) the boundary of the arrays; if they are,
// the function will panic instead of going out of bounds.
let mut count = 0;
for i in row_index-1..=row_index+1 {
for j in col_index-1..=col_index+1 {
if i == row_index && j == col_index {
continue;
}
if board.cells[i][j] == CellState::Alive || board.cells[i][j] == CellState::AboutToDie {
count += 1;
}
}
}
count
}
fn mark_cell_transitions(board: &mut Board) {
for row_index in board.min_row-1..=board.max_row+1 {
for col_index in board.min_col-1..=board.max_col+1 {
let neighbors = count_neighbors(board, row_index, col_index);
// Borrow a mutable reference to the array cell
let this_cell_state = &mut board.cells[row_index][col_index];
*this_cell_state = match *this_cell_state {
CellState::Empty if neighbors == 3 => CellState::AboutToBeBorn,
CellState::Alive if !(2..=3).contains(&neighbors) => CellState::AboutToDie,
_ => *this_cell_state,
}
}
}
board.generation += 1;
}
fn delay() {
thread::sleep(time::Duration::from_millis(500));
}