mirror of
https://github.com/rosenpass/rosenpass.git
synced 2025-12-12 07:40:30 -08:00
move each primitive into its own module; add rough documentation
This commit does not change anything about the implementations.
This commit is contained in:
committed by
Karolin Varner
parent
60235dc6ea
commit
27ba729c14
24
constant-time/src/compare.rs
Normal file
24
constant-time/src/compare.rs
Normal file
@@ -0,0 +1,24 @@
|
||||
/// compares two slices of memory content and returns an integer indicating the relationship between
|
||||
/// the slices
|
||||
///
|
||||
/// ## Returns
|
||||
/// - <0 if the first byte that does not match both slices has a lower value in `a` than in `b`
|
||||
/// - 0 if the contents are equal
|
||||
/// - >0 if the first byte that does not match both slices has a higher value in `a` than in `b`
|
||||
///
|
||||
/// ## Leaks
|
||||
/// If the two slices have differents lengths, the function will return immediately. This
|
||||
/// effectively leaks the information whether the slices have equal length or not. This is widely
|
||||
/// considered safe.
|
||||
///
|
||||
/// The execution time of the function grows approx. linear with the length of the input. This is
|
||||
/// considered safe.
|
||||
///
|
||||
/// ## Tests
|
||||
/// For discussion on how to ensure the constant-time execution of this function, see
|
||||
/// <https://github.com/rosenpass/rosenpass/issues/232>
|
||||
#[inline]
|
||||
pub fn compare(a: &[u8], b: &[u8]) -> i32 {
|
||||
assert!(a.len() == b.len());
|
||||
unsafe { memsec::memcmp(a.as_ptr(), b.as_ptr(), a.len()) }
|
||||
}
|
||||
48
constant-time/src/increment.rs
Normal file
48
constant-time/src/increment.rs
Normal file
@@ -0,0 +1,48 @@
|
||||
use core::hint::black_box;
|
||||
|
||||
/// Interpret the given slice as a little-endian unsigned integer
|
||||
/// and increment that integer.
|
||||
///
|
||||
/// # Leaks
|
||||
/// TODO: mention here if this function leaks any information, see
|
||||
/// <https://github.com/rosenpass/rosenpass/issues/232>
|
||||
///
|
||||
/// ## Tests
|
||||
/// For discussion on how to ensure the constant-time execution of this function, see
|
||||
/// <https://github.com/rosenpass/rosenpass/issues/232>
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use rosenpass_constant_time::increment as inc;
|
||||
/// use rosenpass_to::To;
|
||||
///
|
||||
/// fn testcase(v: &[u8], correct: &[u8]) {
|
||||
/// let mut v = v.to_owned();
|
||||
/// inc(&mut v);
|
||||
/// assert_eq!(&v, correct);
|
||||
/// }
|
||||
///
|
||||
/// testcase(b"", b"");
|
||||
/// testcase(b"\x00", b"\x01");
|
||||
/// testcase(b"\x01", b"\x02");
|
||||
/// testcase(b"\xfe", b"\xff");
|
||||
/// testcase(b"\xff", b"\x00");
|
||||
/// testcase(b"\x00\x00", b"\x01\x00");
|
||||
/// testcase(b"\x01\x00", b"\x02\x00");
|
||||
/// testcase(b"\xfe\x00", b"\xff\x00");
|
||||
/// testcase(b"\xff\x00", b"\x00\x01");
|
||||
/// testcase(b"\x00\x00\x00\x00\x00\x00", b"\x01\x00\x00\x00\x00\x00");
|
||||
/// testcase(b"\x00\xa3\x00\x77\x00\x00", b"\x01\xa3\x00\x77\x00\x00");
|
||||
/// testcase(b"\xff\xa3\x00\x77\x00\x00", b"\x00\xa4\x00\x77\x00\x00");
|
||||
/// testcase(b"\xff\xff\xff\x77\x00\x00", b"\x00\x00\x00\x78\x00\x00");
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn increment(v: &mut [u8]) {
|
||||
let mut carry = 1u8;
|
||||
for val in v.iter_mut() {
|
||||
let (v, c) = black_box(*val).overflowing_add(black_box(carry));
|
||||
*black_box(val) = v;
|
||||
*black_box(&mut carry) = black_box(black_box(c) as u8);
|
||||
}
|
||||
}
|
||||
@@ -1,168 +1,17 @@
|
||||
use core::hint::black_box;
|
||||
//! constant-time implementations of some primitives
|
||||
//!
|
||||
//! Rosenpass internal library providing basic constant-time operations.
|
||||
//!
|
||||
//! ## TODO
|
||||
//! Figure out methodology to ensure that code is actually constant time, see
|
||||
//! <https://github.com/rosenpass/rosenpass/issues/232>
|
||||
|
||||
use rosenpass_to::{with_destination, To};
|
||||
mod compare;
|
||||
mod increment;
|
||||
mod memcmp;
|
||||
mod xor;
|
||||
|
||||
/// Xors the source into the destination
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use rosenpass_constant_time::xor;
|
||||
/// use rosenpass_to::To;
|
||||
/// assert_eq!(
|
||||
/// xor(b"world").to_this(|| b"hello".to_vec()),
|
||||
/// b"\x1f\n\x1e\x00\x0b");
|
||||
/// ```
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// If source and destination are of different sizes.
|
||||
#[inline]
|
||||
pub fn xor(src: &[u8]) -> impl To<[u8], ()> + '_ {
|
||||
with_destination(|dst: &mut [u8]| {
|
||||
assert!(black_box(src.len()) == black_box(dst.len()));
|
||||
for (dv, sv) in dst.iter_mut().zip(src.iter()) {
|
||||
*black_box(dv) ^= black_box(*sv);
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn memcmp(a: &[u8], b: &[u8]) -> bool {
|
||||
a.len() == b.len()
|
||||
&& unsafe { memsec::memeq(a.as_ptr() as *const u8, b.as_ptr() as *const u8, a.len()) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn compare(a: &[u8], b: &[u8]) -> i32 {
|
||||
assert!(a.len() == b.len());
|
||||
unsafe { memsec::memcmp(a.as_ptr(), b.as_ptr(), a.len()) }
|
||||
}
|
||||
|
||||
/// Interpret the given slice as a little-endian unsigned integer
|
||||
/// and increment that integer.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use rosenpass_constant_time::increment as inc;
|
||||
/// use rosenpass_to::To;
|
||||
///
|
||||
/// fn testcase(v: &[u8], correct: &[u8]) {
|
||||
/// let mut v = v.to_owned();
|
||||
/// inc(&mut v);
|
||||
/// assert_eq!(&v, correct);
|
||||
/// }
|
||||
///
|
||||
/// testcase(b"", b"");
|
||||
/// testcase(b"\x00", b"\x01");
|
||||
/// testcase(b"\x01", b"\x02");
|
||||
/// testcase(b"\xfe", b"\xff");
|
||||
/// testcase(b"\xff", b"\x00");
|
||||
/// testcase(b"\x00\x00", b"\x01\x00");
|
||||
/// testcase(b"\x01\x00", b"\x02\x00");
|
||||
/// testcase(b"\xfe\x00", b"\xff\x00");
|
||||
/// testcase(b"\xff\x00", b"\x00\x01");
|
||||
/// testcase(b"\x00\x00\x00\x00\x00\x00", b"\x01\x00\x00\x00\x00\x00");
|
||||
/// testcase(b"\x00\xa3\x00\x77\x00\x00", b"\x01\xa3\x00\x77\x00\x00");
|
||||
/// testcase(b"\xff\xa3\x00\x77\x00\x00", b"\x00\xa4\x00\x77\x00\x00");
|
||||
/// testcase(b"\xff\xff\xff\x77\x00\x00", b"\x00\x00\x00\x78\x00\x00");
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn increment(v: &mut [u8]) {
|
||||
let mut carry = 1u8;
|
||||
for val in v.iter_mut() {
|
||||
let (v, c) = black_box(*val).overflowing_add(black_box(carry));
|
||||
*black_box(val) = v;
|
||||
*black_box(&mut carry) = black_box(black_box(c) as u8);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "constant_time_tests"))]
|
||||
mod constant_time_tests {
|
||||
use super::*;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
use std::time::Instant;
|
||||
|
||||
#[test]
|
||||
/// tests whether [memcmp] actually runs in constant time
|
||||
///
|
||||
/// This test function will run an equal amount of comparisons on two different sets of parameters:
|
||||
/// - completely equal slices
|
||||
/// - completely unequal slices.
|
||||
/// All comparisons are executed in a randomized order. The test will fail if one of the
|
||||
/// two sets is checked for equality significantly faster than the other set
|
||||
/// (absolute correlation coefficient ≥ 0.01)
|
||||
fn memcmp_runs_in_constant_time() {
|
||||
// prepare data to compare
|
||||
let n: usize = 1E6 as usize; // number of comparisons to run
|
||||
let len = 1024; // length of each slice passed as parameters to the tested comparison function
|
||||
let a1 = "a".repeat(len);
|
||||
let a2 = a1.clone();
|
||||
let b = "b".repeat(len);
|
||||
|
||||
let a1 = a1.as_bytes();
|
||||
let a2 = a2.as_bytes();
|
||||
let b = b.as_bytes();
|
||||
|
||||
// vector representing all timing tests
|
||||
//
|
||||
// Each element is a tuple of:
|
||||
// 0: whether the test compared two equal slices
|
||||
// 1: the duration needed for the comparison to run
|
||||
let mut tests = (0..n)
|
||||
.map(|i| (i < n / 2, std::time::Duration::ZERO))
|
||||
.collect::<Vec<_>>();
|
||||
tests.shuffle(&mut thread_rng());
|
||||
|
||||
// run comparisons / call function to test
|
||||
for test in tests.iter_mut() {
|
||||
let now = Instant::now();
|
||||
if test.0 {
|
||||
memcmp(a1, a2);
|
||||
} else {
|
||||
memcmp(a1, b);
|
||||
}
|
||||
test.1 = now.elapsed();
|
||||
// println!("eq: {}, elapsed: {:.2?}", test.0, test.1);
|
||||
}
|
||||
|
||||
// sort by execution time and calculate Pearson correlation coefficient
|
||||
tests.sort_by_key(|v| v.1);
|
||||
let tests = tests
|
||||
.iter()
|
||||
.map(|t| (if t.0 { 1_f64 } else { 0_f64 }, t.1.as_nanos() as f64))
|
||||
.collect::<Vec<_>>();
|
||||
// averages
|
||||
let (avg_x, avg_y): (f64, f64) = (
|
||||
tests.iter().map(|t| t.0).sum::<f64>() / n as f64,
|
||||
tests.iter().map(|t| t.1).sum::<f64>() / n as f64,
|
||||
);
|
||||
assert!((avg_x - 0.5).abs() < 1E-12);
|
||||
// standard deviations
|
||||
let sd_x = 0.5;
|
||||
let sd_y = (1_f64 / n as f64
|
||||
* tests
|
||||
.iter()
|
||||
.map(|t| {
|
||||
let difference = t.1 - avg_y;
|
||||
difference * difference
|
||||
})
|
||||
.sum::<f64>())
|
||||
.sqrt();
|
||||
// covariance
|
||||
let cv = 1_f64 / n as f64
|
||||
* tests
|
||||
.iter()
|
||||
.map(|t| (t.0 - avg_x) * (t.1 - avg_y))
|
||||
.sum::<f64>();
|
||||
// Pearson correlation
|
||||
let correlation = cv / (sd_x * sd_y);
|
||||
println!("correlation: {:.6?}", correlation);
|
||||
assert!(
|
||||
correlation.abs() < 0.01,
|
||||
"execution time correlates with result"
|
||||
)
|
||||
}
|
||||
}
|
||||
pub use compare::compare;
|
||||
pub use increment::increment;
|
||||
pub use memcmp::memcmp;
|
||||
pub use xor::xor;
|
||||
|
||||
110
constant-time/src/memcmp.rs
Normal file
110
constant-time/src/memcmp.rs
Normal file
@@ -0,0 +1,110 @@
|
||||
/// compares two sclices of memory content and returns whether they are equal
|
||||
///
|
||||
/// ## Leaks
|
||||
/// If the two slices have differents lengths, the function will return immediately. This
|
||||
/// effectively leaks the information whether the slices have equal length or not. This is widely
|
||||
/// considered safe.
|
||||
///
|
||||
/// The execution time of the function grows approx. linear with the length of the input. This is
|
||||
/// considered safe.
|
||||
///
|
||||
/// ## Tests
|
||||
/// [`tests::memcmp_runs_in_constant_time`] runs a stasticial test that the equality of the two
|
||||
/// input parameters does not correlate with the run time.
|
||||
///
|
||||
/// For discussion on how to (further) ensure the constant-time execution of this function,
|
||||
/// see <https://github.com/rosenpass/rosenpass/issues/232>
|
||||
#[inline]
|
||||
pub fn memcmp(a: &[u8], b: &[u8]) -> bool {
|
||||
a.len() == b.len()
|
||||
&& unsafe { memsec::memeq(a.as_ptr() as *const u8, b.as_ptr() as *const u8, a.len()) }
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "constant_time_tests"))]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
use std::time::Instant;
|
||||
|
||||
#[test]
|
||||
/// tests whether [memcmp] actually runs in constant time
|
||||
///
|
||||
/// This test function will run an equal amount of comparisons on two different sets of parameters:
|
||||
/// - completely equal slices
|
||||
/// - completely unequal slices.
|
||||
/// All comparisons are executed in a randomized order. The test will fail if one of the
|
||||
/// two sets is checked for equality significantly faster than the other set
|
||||
/// (absolute correlation coefficient ≥ 0.01)
|
||||
fn memcmp_runs_in_constant_time() {
|
||||
// prepare data to compare
|
||||
let n: usize = 1E6 as usize; // number of comparisons to run
|
||||
let len = 1024; // length of each slice passed as parameters to the tested comparison function
|
||||
let a1 = "a".repeat(len);
|
||||
let a2 = a1.clone();
|
||||
let b = "b".repeat(len);
|
||||
|
||||
let a1 = a1.as_bytes();
|
||||
let a2 = a2.as_bytes();
|
||||
let b = b.as_bytes();
|
||||
|
||||
// vector representing all timing tests
|
||||
//
|
||||
// Each element is a tuple of:
|
||||
// 0: whether the test compared two equal slices
|
||||
// 1: the duration needed for the comparison to run
|
||||
let mut tests = (0..n)
|
||||
.map(|i| (i < n / 2, std::time::Duration::ZERO))
|
||||
.collect::<Vec<_>>();
|
||||
tests.shuffle(&mut thread_rng());
|
||||
|
||||
// run comparisons / call function to test
|
||||
for test in tests.iter_mut() {
|
||||
let now = Instant::now();
|
||||
if test.0 {
|
||||
memcmp(a1, a2);
|
||||
} else {
|
||||
memcmp(a1, b);
|
||||
}
|
||||
test.1 = now.elapsed();
|
||||
// println!("eq: {}, elapsed: {:.2?}", test.0, test.1);
|
||||
}
|
||||
|
||||
// sort by execution time and calculate Pearson correlation coefficient
|
||||
tests.sort_by_key(|v| v.1);
|
||||
let tests = tests
|
||||
.iter()
|
||||
.map(|t| (if t.0 { 1_f64 } else { 0_f64 }, t.1.as_nanos() as f64))
|
||||
.collect::<Vec<_>>();
|
||||
// averages
|
||||
let (avg_x, avg_y): (f64, f64) = (
|
||||
tests.iter().map(|t| t.0).sum::<f64>() / n as f64,
|
||||
tests.iter().map(|t| t.1).sum::<f64>() / n as f64,
|
||||
);
|
||||
assert!((avg_x - 0.5).abs() < 1E-12);
|
||||
// standard deviations
|
||||
let sd_x = 0.5;
|
||||
let sd_y = (1_f64 / n as f64
|
||||
* tests
|
||||
.iter()
|
||||
.map(|t| {
|
||||
let difference = t.1 - avg_y;
|
||||
difference * difference
|
||||
})
|
||||
.sum::<f64>())
|
||||
.sqrt();
|
||||
// covariance
|
||||
let cv = 1_f64 / n as f64
|
||||
* tests
|
||||
.iter()
|
||||
.map(|t| (t.0 - avg_x) * (t.1 - avg_y))
|
||||
.sum::<f64>();
|
||||
// Pearson correlation
|
||||
let correlation = cv / (sd_x * sd_y);
|
||||
println!("correlation: {:.6?}", correlation);
|
||||
assert!(
|
||||
correlation.abs() < 0.01,
|
||||
"execution time correlates with result"
|
||||
)
|
||||
}
|
||||
}
|
||||
34
constant-time/src/xor.rs
Normal file
34
constant-time/src/xor.rs
Normal file
@@ -0,0 +1,34 @@
|
||||
use core::hint::black_box;
|
||||
use rosenpass_to::{with_destination, To};
|
||||
|
||||
/// Xors the source into the destination
|
||||
///
|
||||
/// # Panics
|
||||
/// If source and destination are of different sizes.
|
||||
///
|
||||
/// # Leaks
|
||||
/// TODO: mention here if this function leaks any information, see
|
||||
/// <https://github.com/rosenpass/rosenpass/issues/232>
|
||||
///
|
||||
/// ## Tests
|
||||
/// For discussion on how to ensure the constant-time execution of this function, see
|
||||
/// <https://github.com/rosenpass/rosenpass/issues/232>
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use rosenpass_constant_time::xor;
|
||||
/// use rosenpass_to::To;
|
||||
/// assert_eq!(
|
||||
/// xor(b"world").to_this(|| b"hello".to_vec()),
|
||||
/// b"\x1f\n\x1e\x00\x0b");
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn xor(src: &[u8]) -> impl To<[u8], ()> + '_ {
|
||||
with_destination(|dst: &mut [u8]| {
|
||||
assert!(black_box(src.len()) == black_box(dst.len()));
|
||||
for (dv, sv) in dst.iter_mut().zip(src.iter()) {
|
||||
*black_box(dv) ^= black_box(*sv);
|
||||
}
|
||||
})
|
||||
}
|
||||
Reference in New Issue
Block a user