move each primitive into its own module; add rough documentation

This commit does not change anything about the implementations.
This commit is contained in:
Ilka Schulz
2024-02-29 12:23:27 +01:00
committed by Karolin Varner
parent 60235dc6ea
commit 27ba729c14
5 changed files with 231 additions and 166 deletions

View File

@@ -0,0 +1,24 @@
/// compares two slices of memory content and returns an integer indicating the relationship between
/// the slices
///
/// ## Returns
/// - <0 if the first byte that does not match both slices has a lower value in `a` than in `b`
/// - 0 if the contents are equal
/// - >0 if the first byte that does not match both slices has a higher value in `a` than in `b`
///
/// ## Leaks
/// If the two slices have differents lengths, the function will return immediately. This
/// effectively leaks the information whether the slices have equal length or not. This is widely
/// considered safe.
///
/// The execution time of the function grows approx. linear with the length of the input. This is
/// considered safe.
///
/// ## Tests
/// For discussion on how to ensure the constant-time execution of this function, see
/// <https://github.com/rosenpass/rosenpass/issues/232>
#[inline]
pub fn compare(a: &[u8], b: &[u8]) -> i32 {
assert!(a.len() == b.len());
unsafe { memsec::memcmp(a.as_ptr(), b.as_ptr(), a.len()) }
}

View File

@@ -0,0 +1,48 @@
use core::hint::black_box;
/// Interpret the given slice as a little-endian unsigned integer
/// and increment that integer.
///
/// # Leaks
/// TODO: mention here if this function leaks any information, see
/// <https://github.com/rosenpass/rosenpass/issues/232>
///
/// ## Tests
/// For discussion on how to ensure the constant-time execution of this function, see
/// <https://github.com/rosenpass/rosenpass/issues/232>
///
/// # Examples
///
/// ```
/// use rosenpass_constant_time::increment as inc;
/// use rosenpass_to::To;
///
/// fn testcase(v: &[u8], correct: &[u8]) {
/// let mut v = v.to_owned();
/// inc(&mut v);
/// assert_eq!(&v, correct);
/// }
///
/// testcase(b"", b"");
/// testcase(b"\x00", b"\x01");
/// testcase(b"\x01", b"\x02");
/// testcase(b"\xfe", b"\xff");
/// testcase(b"\xff", b"\x00");
/// testcase(b"\x00\x00", b"\x01\x00");
/// testcase(b"\x01\x00", b"\x02\x00");
/// testcase(b"\xfe\x00", b"\xff\x00");
/// testcase(b"\xff\x00", b"\x00\x01");
/// testcase(b"\x00\x00\x00\x00\x00\x00", b"\x01\x00\x00\x00\x00\x00");
/// testcase(b"\x00\xa3\x00\x77\x00\x00", b"\x01\xa3\x00\x77\x00\x00");
/// testcase(b"\xff\xa3\x00\x77\x00\x00", b"\x00\xa4\x00\x77\x00\x00");
/// testcase(b"\xff\xff\xff\x77\x00\x00", b"\x00\x00\x00\x78\x00\x00");
/// ```
#[inline]
pub fn increment(v: &mut [u8]) {
let mut carry = 1u8;
for val in v.iter_mut() {
let (v, c) = black_box(*val).overflowing_add(black_box(carry));
*black_box(val) = v;
*black_box(&mut carry) = black_box(black_box(c) as u8);
}
}

View File

@@ -1,168 +1,17 @@
use core::hint::black_box;
//! constant-time implementations of some primitives
//!
//! Rosenpass internal library providing basic constant-time operations.
//!
//! ## TODO
//! Figure out methodology to ensure that code is actually constant time, see
//! <https://github.com/rosenpass/rosenpass/issues/232>
use rosenpass_to::{with_destination, To};
mod compare;
mod increment;
mod memcmp;
mod xor;
/// Xors the source into the destination
///
/// # Examples
///
/// ```
/// use rosenpass_constant_time::xor;
/// use rosenpass_to::To;
/// assert_eq!(
/// xor(b"world").to_this(|| b"hello".to_vec()),
/// b"\x1f\n\x1e\x00\x0b");
/// ```
///
/// # Panics
///
/// If source and destination are of different sizes.
#[inline]
pub fn xor(src: &[u8]) -> impl To<[u8], ()> + '_ {
with_destination(|dst: &mut [u8]| {
assert!(black_box(src.len()) == black_box(dst.len()));
for (dv, sv) in dst.iter_mut().zip(src.iter()) {
*black_box(dv) ^= black_box(*sv);
}
})
}
#[inline]
pub fn memcmp(a: &[u8], b: &[u8]) -> bool {
a.len() == b.len()
&& unsafe { memsec::memeq(a.as_ptr() as *const u8, b.as_ptr() as *const u8, a.len()) }
}
#[inline]
pub fn compare(a: &[u8], b: &[u8]) -> i32 {
assert!(a.len() == b.len());
unsafe { memsec::memcmp(a.as_ptr(), b.as_ptr(), a.len()) }
}
/// Interpret the given slice as a little-endian unsigned integer
/// and increment that integer.
///
/// # Examples
///
/// ```
/// use rosenpass_constant_time::increment as inc;
/// use rosenpass_to::To;
///
/// fn testcase(v: &[u8], correct: &[u8]) {
/// let mut v = v.to_owned();
/// inc(&mut v);
/// assert_eq!(&v, correct);
/// }
///
/// testcase(b"", b"");
/// testcase(b"\x00", b"\x01");
/// testcase(b"\x01", b"\x02");
/// testcase(b"\xfe", b"\xff");
/// testcase(b"\xff", b"\x00");
/// testcase(b"\x00\x00", b"\x01\x00");
/// testcase(b"\x01\x00", b"\x02\x00");
/// testcase(b"\xfe\x00", b"\xff\x00");
/// testcase(b"\xff\x00", b"\x00\x01");
/// testcase(b"\x00\x00\x00\x00\x00\x00", b"\x01\x00\x00\x00\x00\x00");
/// testcase(b"\x00\xa3\x00\x77\x00\x00", b"\x01\xa3\x00\x77\x00\x00");
/// testcase(b"\xff\xa3\x00\x77\x00\x00", b"\x00\xa4\x00\x77\x00\x00");
/// testcase(b"\xff\xff\xff\x77\x00\x00", b"\x00\x00\x00\x78\x00\x00");
/// ```
#[inline]
pub fn increment(v: &mut [u8]) {
let mut carry = 1u8;
for val in v.iter_mut() {
let (v, c) = black_box(*val).overflowing_add(black_box(carry));
*black_box(val) = v;
*black_box(&mut carry) = black_box(black_box(c) as u8);
}
}
#[cfg(all(test, feature = "constant_time_tests"))]
mod constant_time_tests {
use super::*;
use rand::seq::SliceRandom;
use rand::thread_rng;
use std::time::Instant;
#[test]
/// tests whether [memcmp] actually runs in constant time
///
/// This test function will run an equal amount of comparisons on two different sets of parameters:
/// - completely equal slices
/// - completely unequal slices.
/// All comparisons are executed in a randomized order. The test will fail if one of the
/// two sets is checked for equality significantly faster than the other set
/// (absolute correlation coefficient ≥ 0.01)
fn memcmp_runs_in_constant_time() {
// prepare data to compare
let n: usize = 1E6 as usize; // number of comparisons to run
let len = 1024; // length of each slice passed as parameters to the tested comparison function
let a1 = "a".repeat(len);
let a2 = a1.clone();
let b = "b".repeat(len);
let a1 = a1.as_bytes();
let a2 = a2.as_bytes();
let b = b.as_bytes();
// vector representing all timing tests
//
// Each element is a tuple of:
// 0: whether the test compared two equal slices
// 1: the duration needed for the comparison to run
let mut tests = (0..n)
.map(|i| (i < n / 2, std::time::Duration::ZERO))
.collect::<Vec<_>>();
tests.shuffle(&mut thread_rng());
// run comparisons / call function to test
for test in tests.iter_mut() {
let now = Instant::now();
if test.0 {
memcmp(a1, a2);
} else {
memcmp(a1, b);
}
test.1 = now.elapsed();
// println!("eq: {}, elapsed: {:.2?}", test.0, test.1);
}
// sort by execution time and calculate Pearson correlation coefficient
tests.sort_by_key(|v| v.1);
let tests = tests
.iter()
.map(|t| (if t.0 { 1_f64 } else { 0_f64 }, t.1.as_nanos() as f64))
.collect::<Vec<_>>();
// averages
let (avg_x, avg_y): (f64, f64) = (
tests.iter().map(|t| t.0).sum::<f64>() / n as f64,
tests.iter().map(|t| t.1).sum::<f64>() / n as f64,
);
assert!((avg_x - 0.5).abs() < 1E-12);
// standard deviations
let sd_x = 0.5;
let sd_y = (1_f64 / n as f64
* tests
.iter()
.map(|t| {
let difference = t.1 - avg_y;
difference * difference
})
.sum::<f64>())
.sqrt();
// covariance
let cv = 1_f64 / n as f64
* tests
.iter()
.map(|t| (t.0 - avg_x) * (t.1 - avg_y))
.sum::<f64>();
// Pearson correlation
let correlation = cv / (sd_x * sd_y);
println!("correlation: {:.6?}", correlation);
assert!(
correlation.abs() < 0.01,
"execution time correlates with result"
)
}
}
pub use compare::compare;
pub use increment::increment;
pub use memcmp::memcmp;
pub use xor::xor;

110
constant-time/src/memcmp.rs Normal file
View File

@@ -0,0 +1,110 @@
/// compares two sclices of memory content and returns whether they are equal
///
/// ## Leaks
/// If the two slices have differents lengths, the function will return immediately. This
/// effectively leaks the information whether the slices have equal length or not. This is widely
/// considered safe.
///
/// The execution time of the function grows approx. linear with the length of the input. This is
/// considered safe.
///
/// ## Tests
/// [`tests::memcmp_runs_in_constant_time`] runs a stasticial test that the equality of the two
/// input parameters does not correlate with the run time.
///
/// For discussion on how to (further) ensure the constant-time execution of this function,
/// see <https://github.com/rosenpass/rosenpass/issues/232>
#[inline]
pub fn memcmp(a: &[u8], b: &[u8]) -> bool {
a.len() == b.len()
&& unsafe { memsec::memeq(a.as_ptr() as *const u8, b.as_ptr() as *const u8, a.len()) }
}
#[cfg(all(test, feature = "constant_time_tests"))]
mod tests {
use super::*;
use rand::seq::SliceRandom;
use rand::thread_rng;
use std::time::Instant;
#[test]
/// tests whether [memcmp] actually runs in constant time
///
/// This test function will run an equal amount of comparisons on two different sets of parameters:
/// - completely equal slices
/// - completely unequal slices.
/// All comparisons are executed in a randomized order. The test will fail if one of the
/// two sets is checked for equality significantly faster than the other set
/// (absolute correlation coefficient ≥ 0.01)
fn memcmp_runs_in_constant_time() {
// prepare data to compare
let n: usize = 1E6 as usize; // number of comparisons to run
let len = 1024; // length of each slice passed as parameters to the tested comparison function
let a1 = "a".repeat(len);
let a2 = a1.clone();
let b = "b".repeat(len);
let a1 = a1.as_bytes();
let a2 = a2.as_bytes();
let b = b.as_bytes();
// vector representing all timing tests
//
// Each element is a tuple of:
// 0: whether the test compared two equal slices
// 1: the duration needed for the comparison to run
let mut tests = (0..n)
.map(|i| (i < n / 2, std::time::Duration::ZERO))
.collect::<Vec<_>>();
tests.shuffle(&mut thread_rng());
// run comparisons / call function to test
for test in tests.iter_mut() {
let now = Instant::now();
if test.0 {
memcmp(a1, a2);
} else {
memcmp(a1, b);
}
test.1 = now.elapsed();
// println!("eq: {}, elapsed: {:.2?}", test.0, test.1);
}
// sort by execution time and calculate Pearson correlation coefficient
tests.sort_by_key(|v| v.1);
let tests = tests
.iter()
.map(|t| (if t.0 { 1_f64 } else { 0_f64 }, t.1.as_nanos() as f64))
.collect::<Vec<_>>();
// averages
let (avg_x, avg_y): (f64, f64) = (
tests.iter().map(|t| t.0).sum::<f64>() / n as f64,
tests.iter().map(|t| t.1).sum::<f64>() / n as f64,
);
assert!((avg_x - 0.5).abs() < 1E-12);
// standard deviations
let sd_x = 0.5;
let sd_y = (1_f64 / n as f64
* tests
.iter()
.map(|t| {
let difference = t.1 - avg_y;
difference * difference
})
.sum::<f64>())
.sqrt();
// covariance
let cv = 1_f64 / n as f64
* tests
.iter()
.map(|t| (t.0 - avg_x) * (t.1 - avg_y))
.sum::<f64>();
// Pearson correlation
let correlation = cv / (sd_x * sd_y);
println!("correlation: {:.6?}", correlation);
assert!(
correlation.abs() < 0.01,
"execution time correlates with result"
)
}
}

34
constant-time/src/xor.rs Normal file
View File

@@ -0,0 +1,34 @@
use core::hint::black_box;
use rosenpass_to::{with_destination, To};
/// Xors the source into the destination
///
/// # Panics
/// If source and destination are of different sizes.
///
/// # Leaks
/// TODO: mention here if this function leaks any information, see
/// <https://github.com/rosenpass/rosenpass/issues/232>
///
/// ## Tests
/// For discussion on how to ensure the constant-time execution of this function, see
/// <https://github.com/rosenpass/rosenpass/issues/232>
///
/// # Examples
///
/// ```
/// use rosenpass_constant_time::xor;
/// use rosenpass_to::To;
/// assert_eq!(
/// xor(b"world").to_this(|| b"hello".to_vec()),
/// b"\x1f\n\x1e\x00\x0b");
/// ```
#[inline]
pub fn xor(src: &[u8]) -> impl To<[u8], ()> + '_ {
with_destination(|dst: &mut [u8]| {
assert!(black_box(src.len()) == black_box(dst.len()));
for (dv, sv) in dst.iter_mut().zip(src.iter()) {
*black_box(dv) ^= black_box(*sv);
}
})
}