change some infer function to support two vocoder

This commit is contained in:
ZhikangNiu
2024-10-31 22:44:45 +08:00
parent 712d52772e
commit 36a4aad668
9 changed files with 99 additions and 62 deletions

View File

@@ -44,20 +44,18 @@ pip install git+https://github.com/SWivid/F5-TTS.git
git clone https://github.com/SWivid/F5-TTS.git
cd F5-TTS
pip install -e .
```
### 3. Init submodule( optional, if you want to change the vocoder from vocos to bigvgan)
```bash
# Init submodule(optional, if you want to change the vocoder from vocos to bigvgan)
git submodule update --init --recursive
```
After that, you need to change the `src/third_party/BigVGAN/bigvgan.py` by adding the following code at the beginning of the file.
After init submodule, you need to change the `src/third_party/BigVGAN/bigvgan.py` by adding the following code at the beginning of the file.
```python
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
```
### 4. Docker usage
### 3. Docker usage
```bash
# Build from Dockerfile
docker build -t f5tts:v1 .
@@ -106,6 +104,10 @@ f5-tts_infer-cli -c custom.toml
# Multi voice. See src/f5_tts/infer/README.md
f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml
# Choose Vocoder
f5-tts_infer-cli --vocoder_name bigvgan --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/model_1250000.pt >
f5-tts_infer-cli --vocoder_name vocos --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base/model_1200000.safetensors >
```
### 3. More instructions

View File

@@ -7,10 +7,16 @@ import torch
import tqdm
from cached_path import cached_path
from f5_tts.infer.utils_infer import (hop_length, infer_process, load_model,
load_vocoder, preprocess_ref_audio_text,
remove_silence_for_generated_wav,
save_spectrogram, target_sample_rate)
from f5_tts.infer.utils_infer import (
hop_length,
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
save_spectrogram,
target_sample_rate,
)
from f5_tts.model import DiT, UNetT
from f5_tts.model.utils import seed_everything
@@ -32,6 +38,7 @@ class F5TTS:
self.target_sample_rate = target_sample_rate
self.hop_length = hop_length
self.seed = -1
self.extract_backend = vocoder_name
# Set device
self.device = device or (
@@ -40,12 +47,12 @@ class F5TTS:
# Load models
self.load_vocoder_model(vocoder_name, local_path)
self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
self.load_ema_model(model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema)
def load_vocoder_model(self, vocoder_name, local_path):
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
def load_ema_model(self, model_type, ckpt_file, extract_backend, vocab_file, ode_method, use_ema):
if model_type == "F5-TTS":
if not ckpt_file:
ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
@@ -59,7 +66,9 @@ class F5TTS:
else:
raise ValueError(f"Unknown model type: {model_type}")
self.ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file, ode_method, use_ema, self.device)
self.ema_model = load_model(
model_cls, model_cfg, ckpt_file, extract_backend, vocab_file, ode_method, use_ema, self.device
)
def export_wav(self, wav, file_wave, remove_silence=False):
sf.write(file_wave, wav, self.target_sample_rate)
@@ -102,6 +111,7 @@ class F5TTS:
gen_text,
self.ema_model,
self.vocoder,
self.extract_backend,
show_info=show_info,
progress=progress,
target_rms=target_rms,

View File

@@ -12,9 +12,11 @@ import torchaudio
from accelerate import Accelerator
from tqdm import tqdm
from f5_tts.eval.utils_eval import (get_inference_prompt,
get_librispeech_test_clean_metainfo,
get_seedtts_testset_metainfo)
from f5_tts.eval.utils_eval import (
get_inference_prompt,
get_librispeech_test_clean_metainfo,
get_seedtts_testset_metainfo,
)
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
from f5_tts.model import CFM, DiT, UNetT
from f5_tts.model.utils import get_tokenizer
@@ -185,7 +187,7 @@ def main():
gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
gen_mel_spec = gen.permute(0, 2, 1)
if extract_backend == "vocos":
generated_wave = vocoder.decode(gen_mel_spec.cpu())
generated_wave = vocoder.decode(gen_mel_spec)
elif extract_backend == "bigvgan":
generated_wave = vocoder(gen_mel_spec)

View File

@@ -10,9 +10,13 @@ import soundfile as sf
import tomli
from cached_path import cached_path
from f5_tts.infer.utils_infer import (infer_process, load_model, load_vocoder,
preprocess_ref_audio_text,
remove_silence_for_generated_wav)
from f5_tts.infer.utils_infer import (
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
)
from f5_tts.model import DiT, UNetT
parser = argparse.ArgumentParser(
@@ -108,12 +112,13 @@ speed = args.speed
wave_path = Path(output_dir) / "infer_cli_out.wav"
# spectrogram_path = Path(output_dir) / "infer_cli_out.png"
if args.vocoder_name == "vocos":
vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
vocoder_local_path = "../checkpoints/vocos-mel-24khz"
elif args.vocoder_name == "bigvgan":
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
extract_backend = args.vocoder_name
vocoder = load_vocoder(
vocoder_name=args.vocoder_name, is_local=args.load_vocoder_from_local, local_path=vocoder_local_path
vocoder_name=extract_backend, is_local=args.load_vocoder_from_local, local_path=vocoder_local_path
)
@@ -122,11 +127,17 @@ if model == "F5-TTS":
model_cls = DiT
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
if ckpt_file == "":
repo_name = "F5-TTS"
exp_name = "F5TTS_Base"
ckpt_step = 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
if args.vocoder_name == "vocos":
repo_name = "F5-TTS"
exp_name = "F5TTS_Base"
ckpt_step = 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
elif args.vocoder_name == "bigvgan":
repo_name = "F5-TTS"
exp_name = "F5TTS_Base_bigvgan"
ckpt_step = 1250000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
elif model == "E2-TTS":
model_cls = UNetT
@@ -145,10 +156,10 @@ elif model == "E2-TTS":
print(f"Using {model}...")
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
ema_model = load_model(model_cls, model_cfg, ckpt_file, args.vocoder_name, vocab_file)
def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence, speed):
def main_process(ref_audio, ref_text, text_gen, model_obj, extract_backend, remove_silence, speed):
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
if "voices" not in config:
voices = {"main": main_voice}
@@ -183,7 +194,7 @@ def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence, speed
ref_text = voices[voice]["ref_text"]
print(f"Voice: {voice}")
audio, final_sample_rate, spectragram = infer_process(
ref_audio, ref_text, gen_text, model_obj, vocoder, speed=speed
ref_audio, ref_text, gen_text, model_obj, vocoder, extract_backend, speed=speed
)
generated_audio_segments.append(audio)
@@ -202,7 +213,7 @@ def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence, speed
def main():
main_process(ref_audio, ref_text, gen_text, ema_model, remove_silence, speed)
main_process(ref_audio, ref_text, gen_text, ema_model, extract_backend, remove_silence, speed)
if __name__ == "__main__":

View File

@@ -4,8 +4,7 @@ import torch
import torch.nn.functional as F
import torchaudio
from f5_tts.infer.utils_infer import (load_checkpoint, load_vocoder,
save_spectrogram)
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
from f5_tts.model import CFM, DiT, UNetT
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
@@ -173,20 +172,20 @@ with torch.inference_mode():
seed=seed,
edit_mask=edit_mask,
)
print(f"Generated mel: {generated.shape}")
print(f"Generated mel: {generated.shape}")
# Final result
generated = generated.to(torch.float32)
generated = generated[:, ref_audio_len:, :]
gen_mel_spec = generated.permute(0, 2, 1)
if extract_backend == "vocos":
generated_wave = vocoder.decode(gen_mel_spec.cpu())
elif extract_backend == "bigvgan":
generated_wave = vocoder(gen_mel_spec)
# Final result
generated = generated.to(torch.float32)
generated = generated[:, ref_audio_len:, :]
gen_mel_spec = generated.permute(0, 2, 1)
if extract_backend == "vocos":
generated_wave = vocoder.decode(gen_mel_spec)
elif extract_backend == "bigvgan":
generated_wave = vocoder(gen_mel_spec)
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
save_spectrogram(gen_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)
print(f"Generated wav: {generated_wave.shape}")
save_spectrogram(gen_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)
print(f"Generated wav: {generated_wave.shape}")

View File

@@ -94,7 +94,6 @@ def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=dev
vocoder = Vocos.from_hparams(f"{local_path}/config.yaml")
state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location="cpu")
vocoder.load_state_dict(state_dict)
vocoder.eval()
vocoder = vocoder.eval().to(device)
else:
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
@@ -148,6 +147,11 @@ def load_checkpoint(model, ckpt_path, device, dtype, use_ema=True):
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
if key in checkpoint["model_state_dict"]:
del checkpoint["model_state_dict"][key]
model.load_state_dict(checkpoint["model_state_dict"])
else:
if ckpt_type == "safetensors":
@@ -160,7 +164,9 @@ def load_checkpoint(model, ckpt_path, device, dtype, use_ema=True):
# load model for inference
def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=device):
def load_model(
model_cls, model_cfg, ckpt_path, extract_backend, vocab_file="", ode_method=ode_method, use_ema=True, device=device
):
if vocab_file == "":
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
tokenizer = "custom"
@@ -282,6 +288,7 @@ def infer_process(
gen_text,
model_obj,
vocoder,
extract_backend,
show_info=print,
progress=tqdm,
target_rms=target_rms,
@@ -307,6 +314,7 @@ def infer_process(
gen_text_batches,
model_obj,
vocoder,
extract_backend,
progress=progress,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
@@ -328,6 +336,7 @@ def infer_batch_process(
gen_text_batches,
model_obj,
vocoder,
extract_backend,
progress=tqdm,
target_rms=0.1,
cross_fade_duration=0.15,
@@ -384,7 +393,7 @@ def infer_batch_process(
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = generated.permute(0, 2, 1)
if extract_backend == "vocos":
generated_wave = vocoder.decode(generated_mel_spec.cpu())
generated_wave = vocoder.decode(generated_mel_spec)
elif extract_backend == "bigvgan":
generated_wave = vocoder(generated_mel_spec)
if rms < target_rms:

View File

@@ -19,8 +19,14 @@ from torch.nn.utils.rnn import pad_sequence
from torchdiffeq import odeint
from f5_tts.model.modules import MelSpec
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
list_str_to_tensor, mask_from_frac_lengths)
from f5_tts.model.utils import (
default,
exists,
lens_to_mask,
list_str_to_idx,
list_str_to_tensor,
mask_from_frac_lengths,
)
class CFM(nn.Module):
@@ -92,12 +98,6 @@ class CFM(nn.Module):
edit_mask=None,
):
self.eval()
assert next(self.parameters()).dtype == torch.float32 or next(self.parameters()).dtype == torch.float16, print(
"Only support fp16 and fp32 inference currently"
)
cond = cond.to(next(self.parameters()).dtype)
# raw wave
if cond.ndim == 2:
@@ -105,6 +105,11 @@ class CFM(nn.Module):
cond = cond.permute(0, 2, 1)
assert cond.shape[-1] == self.num_channels
assert next(self.parameters()).dtype == torch.float32 or next(self.parameters()).dtype == torch.float16, print(
"Only support fp16 and fp32 inference currently"
)
cond = cond.to(next(self.parameters()).dtype)
batch, cond_seq_len, device = *cond.shape[:2], cond.device
if not exists(lens):
lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)

View File

@@ -123,7 +123,7 @@ def get_vocos_mel_spectrogram(
center=True,
normalized=False,
norm=None,
)
).to(waveform.device)
if len(waveform.shape) == 3:
waveform = waveform.squeeze(1) # 'b 1 nw -> b nw'

View File

@@ -187,8 +187,7 @@ class Trainer:
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
if self.log_samples:
from f5_tts.infer.utils_infer import (cfg_strength, load_vocoder,
nfe_step, sway_sampling_coef)
from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
vocoder = load_vocoder(vocoder_name=self.vocoder_name)
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.mel_stft.sample_rate
@@ -315,7 +314,7 @@ class Trainer:
self.save_checkpoint(global_step)
if self.log_samples and self.accelerator.is_local_main_process:
ref_audio, ref_audio_len = vocoder.decode(batch["mel"][0].unsqueeze(0).cpu()), mel_lengths[0]
ref_audio, ref_audio_len = vocoder.decode(batch["mel"][0].unsqueeze(0)), mel_lengths[0]
torchaudio.save(f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio, target_sample_rate)
with torch.inference_mode():
generated, _ = self.accelerator.unwrap_model(self.model).sample(