add tensorboard and add export sample for mel and audio

This commit is contained in:
unknown
2024-10-29 14:20:50 +02:00
parent d601a70ad1
commit 37eb3b50da
3 changed files with 237 additions and 14 deletions

View File

@@ -3,7 +3,11 @@ from __future__ import annotations
import os
import gc
from tqdm import tqdm
import wandb
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
print("TensorBoard is not installed")
import torch
from torch.optim import AdamW
@@ -19,9 +23,26 @@ from f5_tts.model import CFM
from f5_tts.model.utils import exists, default
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
import numpy as np
import matplotlib.pyplot as plt
# trainer
# audio imports
import torchaudio
import soundfile as sf
from vocos import Vocos
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
# -----------------------------------------
target_sample_rate = 24000
hop_length = 256
nfe_step = 16
cfg_strength = 2.0
sway_sampling_coef = -1.0
# -----------------------------------------
class Trainer:
def __init__(
@@ -39,6 +60,8 @@ class Trainer:
max_grad_norm=1.0,
noise_scheduler: str | None = None,
duration_predictor: torch.nn.Module | None = None,
logger: str = "wandb", # Add logger parameter wandb,tensorboard , none
log_dir: str = "logs", # Add log directory parameter
wandb_project="test_e2-tts",
wandb_run_name="test_run",
wandb_resume_id: str = None,
@@ -46,24 +69,24 @@ class Trainer:
accelerate_kwargs: dict = dict(),
ema_kwargs: dict = dict(),
bnb_optimizer: bool = False,
export_samples=False,
):
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
logger = "wandb" if wandb.api.api_key else None
print(f"Using logger: {logger}")
self.logger = logger
if self.logger == "wandb":
self.accelerator = Accelerator(
log_with="wandb",
kwargs_handlers=[ddp_kwargs],
gradient_accumulation_steps=grad_accumulation_steps,
**accelerate_kwargs,
)
self.accelerator = Accelerator(
log_with=logger,
kwargs_handlers=[ddp_kwargs],
gradient_accumulation_steps=grad_accumulation_steps,
**accelerate_kwargs,
)
if logger == "wandb":
if exists(wandb_resume_id):
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
else:
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
self.accelerator.init_trackers(
project_name=wandb_project,
init_kwargs=init_kwargs,
@@ -80,12 +103,37 @@ class Trainer:
"noise_scheduler": noise_scheduler,
},
)
elif self.logger == "tensorboard":
self.accelerator = Accelerator(
kwargs_handlers=[ddp_kwargs],
gradient_accumulation_steps=grad_accumulation_steps,
**accelerate_kwargs,
)
if self.is_main:
path_log_dir = os.path.join(log_dir, wandb_project)
os.makedirs(path_log_dir, exist_ok=True)
existing_folders = [folder for folder in os.listdir(path_log_dir) if folder.startswith("exp")]
next_number = len(existing_folders) + 2
folder_name = f"exp{next_number}"
folder_path = os.path.join(path_log_dir, folder_name)
os.makedirs(folder_path, exist_ok=True)
self.writer = SummaryWriter(log_dir=folder_path)
# export audio and mel
self.export_samples = export_samples
if self.export_samples:
self.path_ckpts_project = checkpoint_path
self.vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
self.vocos.to("cpu")
self.file_path_samples = os.path.join(self.path_ckpts_project, "samples")
os.makedirs(self.file_path_samples, exist_ok=True)
self.model = model
if self.is_main:
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
self.ema_model.to(self.accelerator.device)
self.epochs = epochs
@@ -175,6 +223,82 @@ class Trainer:
gc.collect()
return step
def log(self, metrics, step):
"""Unified logging method for both WandB and TensorBoard"""
if self.logger == "none":
return
if self.logger == "wandb":
self.accelerator.log(metrics, step=step)
elif self.is_main:
for key, value in metrics.items():
self.writer.add_scalar(key, value, step)
def export_add_log(self, global_step, mel_org, text_inputs):
try:
generated_wave_org = self.vocos.decode(mel_org.unsqueeze(0).cpu())
generated_wave_org = generated_wave_org.squeeze().cpu().numpy()
file_wav_org = os.path.join(self.file_path_samples, f"step_{global_step}_org.wav")
sf.write(file_wav_org, generated_wave_org, target_sample_rate)
audio, sr = torchaudio.load(file_wav_org)
audio = audio.to("cuda")
ref_audio_len = audio.shape[-1] // hop_length
text = [text_inputs[0] + [" . "] + text_inputs[0]]
duration = int((audio.shape[1] / 256) * 2.0)
with torch.inference_mode():
generated_gen, _ = self.model.sample(
cond=audio,
text=text,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated_gen = generated_gen.to(torch.float32)
generated_gen = generated_gen[:, ref_audio_len:, :]
generated_mel_spec_gen = generated_gen.permute(0, 2, 1)
generated_wave_gen = self.vocos.decode(generated_mel_spec_gen.cpu())
generated_wave_gen = generated_wave_gen.squeeze().cpu().numpy()
file_wav_gen = os.path.join(self.file_path_samples, f"step_{global_step}_gen.wav")
sf.write(file_wav_gen, generated_wave_gen, target_sample_rate)
if self.logger == "tensorboard":
self.writer.add_audio("Audio/original", generated_wave_org, global_step, sample_rate=target_sample_rate)
self.writer.add_audio("Audio/generate", generated_wave_gen, global_step, sample_rate=target_sample_rate)
mel_org = mel_org
mel_min, mel_max = mel_org.min(), mel_org.max()
mel_norm = (mel_org - mel_min) / (mel_max - mel_min + 1e-8)
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
mel_colored = np.transpose(mel_colored, (2, 0, 1))
if self.logger == "tensorboard":
self.writer.add_image("Mel/oginal", mel_colored, global_step, dataformats="CHW")
mel_colored_hwc = np.transpose(mel_colored, (1, 2, 0))
file_gen_org = os.path.join(self.file_path_samples, f"step_{global_step}_org.png")
plt.imsave(file_gen_org, mel_colored_hwc)
mel_gen = generated_mel_spec_gen[0]
mel_min, mel_max = mel_gen.min(), mel_gen.max()
mel_norm = (mel_gen - mel_min) / (mel_max - mel_min + 1e-8)
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
mel_colored = np.transpose(mel_colored, (2, 0, 1))
if self.logger == "tensorboard":
self.writer.add_image("Mel/generate", mel_colored, global_step, dataformats="CHW")
mel_colored_hwc = np.transpose(mel_colored, (1, 2, 0))
file_gen_gen = os.path.join(self.file_path_samples, f"step_{global_step}_gen.png")
plt.imsave(file_gen_gen, mel_colored_hwc)
except Exception as e:
print("An error occurred:", e)
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
if exists(resumable_with_seed):
generator = torch.Generator()
@@ -270,6 +394,15 @@ class Trainer:
loss, cond, pred = self.model(
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
)
# save 4 audio per save step
if (
self.accelerator.is_local_main_process
and self.export_samples
and global_step % (int(self.save_per_updates * 0.25) * self.grad_accumulation_steps) == 0
):
self.export_add_log(global_step, batch["mel"][0], text_inputs)
self.accelerator.backward(loss)
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
@@ -285,7 +418,7 @@ class Trainer:
global_step += 1
if self.accelerator.is_local_main_process:
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
self.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
progress_bar.set_postfix(step=str(global_step), loss=loss.item())

View File

@@ -56,6 +56,14 @@ def parse_args():
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
)
parser.add_argument(
"--export_samples",
type=bool,
default=False,
help="Export 4 audio and spect samples for the checkpoint audio, per step.",
)
parser.add_argument("--logger", type=str, default="wandb", choices=["none", "wandb", "tensorboard"], help="logger")
return parser.parse_args()
@@ -64,6 +72,7 @@ def parse_args():
def main():
args = parse_args()
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
# Model parameters based on experiment name
@@ -136,6 +145,8 @@ def main():
wandb_run_name=args.exp_name,
wandb_resume_id=wandb_resume_id,
last_per_steps=args.last_per_steps,
logger=args.logger,
export_samples=args.export_samples,
)
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)

View File

@@ -447,6 +447,8 @@ def start_training(
cmd += f" --tokenizer {tokenizer_type} "
cmd += " --export_samples True --logger wandb "
print(cmd)
save_settings(
@@ -1223,6 +1225,27 @@ def get_checkpoints_project(project_name, is_gradio=True):
return files_checkpoints, selelect_checkpoint
def get_audio_project(project_name, is_gradio=True):
if project_name is None:
return [], ""
project_name = project_name.replace("_pinyin", "").replace("_char", "")
if os.path.isdir(path_project_ckpts):
files_audios = glob(os.path.join(path_project_ckpts, project_name, "samples", "*.wav"))
files_audios = sorted(files_audios, key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0]))
files_audios = [item.replace("_gen.wav", "") for item in files_audios if item.endswith("_gen.wav")]
else:
files_audios = []
selelect_checkpoint = None if not files_audios else files_audios[0]
if is_gradio:
return gr.update(choices=files_audios, value=selelect_checkpoint)
return files_audios, selelect_checkpoint
def get_gpu_stats():
gpu_stats = ""
@@ -1290,6 +1313,21 @@ def get_combined_stats():
return combined_stats
def get_audio_select(file_sample):
select_audio_org = file_sample
select_audio_gen = file_sample
select_image_org = file_sample
select_image_gen = file_sample
if file_sample is not None:
select_audio_org += "_org.wav"
select_audio_gen += "_gen.wav"
select_image_org += "_org.png"
select_image_gen += "_gen.png"
return select_audio_org, select_audio_gen, select_image_org, select_image_gen
with gr.Blocks() as app:
gr.Markdown(
"""
@@ -1511,6 +1549,47 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
ch_stream = gr.Checkbox(label="stream output experiment.", value=True)
txt_info_train = gr.Text(label="info", value="")
list_audios, select_audio = get_audio_project(projects_selelect, False)
select_audio_org = select_audio
select_audio_gen = select_audio
select_image_org = select_audio
select_image_gen = select_audio
if select_audio is not None:
select_audio_org += "_org.wav"
select_audio_gen += "_gen.wav"
select_image_org += "_org.png"
select_image_gen += "_gen.png"
with gr.Row():
ch_list_audio = gr.Dropdown(
choices=list_audios,
value=select_audio,
label="audios",
allow_custom_value=True,
scale=6,
interactive=True,
)
bt_stream_audio = gr.Button("refresh", scale=1)
bt_stream_audio.click(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
with gr.Row():
audio_org_stream = gr.Audio(label="original", type="filepath", value=select_audio_org)
mel_org_stream = gr.Image(label="original", type="filepath", value=select_image_org)
with gr.Row():
audio_gen_stream = gr.Audio(label="generate", type="filepath", value=select_audio_gen)
mel_gen_stream = gr.Image(label="generate", type="filepath", value=select_image_gen)
ch_list_audio.change(
fn=get_audio_select,
inputs=[ch_list_audio],
outputs=[audio_org_stream, audio_gen_stream, mel_org_stream, mel_gen_stream],
)
start_button.click(
fn=start_training,
inputs=[