mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-12 15:50:07 -08:00
add tensorboard and add export sample for mel and audio
This commit is contained in:
@@ -3,7 +3,11 @@ from __future__ import annotations
|
||||
import os
|
||||
import gc
|
||||
from tqdm import tqdm
|
||||
import wandb
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except ImportError:
|
||||
print("TensorBoard is not installed")
|
||||
|
||||
import torch
|
||||
from torch.optim import AdamW
|
||||
@@ -19,9 +23,26 @@ from f5_tts.model import CFM
|
||||
from f5_tts.model.utils import exists, default
|
||||
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
||||
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
# trainer
|
||||
|
||||
# audio imports
|
||||
import torchaudio
|
||||
import soundfile as sf
|
||||
from vocos import Vocos
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||
|
||||
# -----------------------------------------
|
||||
target_sample_rate = 24000
|
||||
hop_length = 256
|
||||
nfe_step = 16
|
||||
cfg_strength = 2.0
|
||||
sway_sampling_coef = -1.0
|
||||
# -----------------------------------------
|
||||
|
||||
|
||||
class Trainer:
|
||||
def __init__(
|
||||
@@ -39,6 +60,8 @@ class Trainer:
|
||||
max_grad_norm=1.0,
|
||||
noise_scheduler: str | None = None,
|
||||
duration_predictor: torch.nn.Module | None = None,
|
||||
logger: str = "wandb", # Add logger parameter wandb,tensorboard , none
|
||||
log_dir: str = "logs", # Add log directory parameter
|
||||
wandb_project="test_e2-tts",
|
||||
wandb_run_name="test_run",
|
||||
wandb_resume_id: str = None,
|
||||
@@ -46,24 +69,24 @@ class Trainer:
|
||||
accelerate_kwargs: dict = dict(),
|
||||
ema_kwargs: dict = dict(),
|
||||
bnb_optimizer: bool = False,
|
||||
export_samples=False,
|
||||
):
|
||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
||||
|
||||
logger = "wandb" if wandb.api.api_key else None
|
||||
print(f"Using logger: {logger}")
|
||||
self.logger = logger
|
||||
if self.logger == "wandb":
|
||||
self.accelerator = Accelerator(
|
||||
log_with="wandb",
|
||||
kwargs_handlers=[ddp_kwargs],
|
||||
gradient_accumulation_steps=grad_accumulation_steps,
|
||||
**accelerate_kwargs,
|
||||
)
|
||||
|
||||
self.accelerator = Accelerator(
|
||||
log_with=logger,
|
||||
kwargs_handlers=[ddp_kwargs],
|
||||
gradient_accumulation_steps=grad_accumulation_steps,
|
||||
**accelerate_kwargs,
|
||||
)
|
||||
|
||||
if logger == "wandb":
|
||||
if exists(wandb_resume_id):
|
||||
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
||||
else:
|
||||
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
||||
|
||||
self.accelerator.init_trackers(
|
||||
project_name=wandb_project,
|
||||
init_kwargs=init_kwargs,
|
||||
@@ -80,12 +103,37 @@ class Trainer:
|
||||
"noise_scheduler": noise_scheduler,
|
||||
},
|
||||
)
|
||||
elif self.logger == "tensorboard":
|
||||
self.accelerator = Accelerator(
|
||||
kwargs_handlers=[ddp_kwargs],
|
||||
gradient_accumulation_steps=grad_accumulation_steps,
|
||||
**accelerate_kwargs,
|
||||
)
|
||||
if self.is_main:
|
||||
path_log_dir = os.path.join(log_dir, wandb_project)
|
||||
os.makedirs(path_log_dir, exist_ok=True)
|
||||
existing_folders = [folder for folder in os.listdir(path_log_dir) if folder.startswith("exp")]
|
||||
next_number = len(existing_folders) + 2
|
||||
folder_name = f"exp{next_number}"
|
||||
folder_path = os.path.join(path_log_dir, folder_name)
|
||||
os.makedirs(folder_path, exist_ok=True)
|
||||
|
||||
self.writer = SummaryWriter(log_dir=folder_path)
|
||||
|
||||
# export audio and mel
|
||||
self.export_samples = export_samples
|
||||
if self.export_samples:
|
||||
self.path_ckpts_project = checkpoint_path
|
||||
|
||||
self.vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
||||
self.vocos.to("cpu")
|
||||
self.file_path_samples = os.path.join(self.path_ckpts_project, "samples")
|
||||
os.makedirs(self.file_path_samples, exist_ok=True)
|
||||
|
||||
self.model = model
|
||||
|
||||
if self.is_main:
|
||||
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
|
||||
|
||||
self.ema_model.to(self.accelerator.device)
|
||||
|
||||
self.epochs = epochs
|
||||
@@ -175,6 +223,82 @@ class Trainer:
|
||||
gc.collect()
|
||||
return step
|
||||
|
||||
def log(self, metrics, step):
|
||||
"""Unified logging method for both WandB and TensorBoard"""
|
||||
if self.logger == "none":
|
||||
return
|
||||
if self.logger == "wandb":
|
||||
self.accelerator.log(metrics, step=step)
|
||||
elif self.is_main:
|
||||
for key, value in metrics.items():
|
||||
self.writer.add_scalar(key, value, step)
|
||||
|
||||
def export_add_log(self, global_step, mel_org, text_inputs):
|
||||
try:
|
||||
generated_wave_org = self.vocos.decode(mel_org.unsqueeze(0).cpu())
|
||||
generated_wave_org = generated_wave_org.squeeze().cpu().numpy()
|
||||
file_wav_org = os.path.join(self.file_path_samples, f"step_{global_step}_org.wav")
|
||||
sf.write(file_wav_org, generated_wave_org, target_sample_rate)
|
||||
|
||||
audio, sr = torchaudio.load(file_wav_org)
|
||||
audio = audio.to("cuda")
|
||||
|
||||
ref_audio_len = audio.shape[-1] // hop_length
|
||||
text = [text_inputs[0] + [" . "] + text_inputs[0]]
|
||||
duration = int((audio.shape[1] / 256) * 2.0)
|
||||
|
||||
with torch.inference_mode():
|
||||
generated_gen, _ = self.model.sample(
|
||||
cond=audio,
|
||||
text=text,
|
||||
duration=duration,
|
||||
steps=nfe_step,
|
||||
cfg_strength=cfg_strength,
|
||||
sway_sampling_coef=sway_sampling_coef,
|
||||
)
|
||||
|
||||
generated_gen = generated_gen.to(torch.float32)
|
||||
generated_gen = generated_gen[:, ref_audio_len:, :]
|
||||
generated_mel_spec_gen = generated_gen.permute(0, 2, 1)
|
||||
generated_wave_gen = self.vocos.decode(generated_mel_spec_gen.cpu())
|
||||
generated_wave_gen = generated_wave_gen.squeeze().cpu().numpy()
|
||||
file_wav_gen = os.path.join(self.file_path_samples, f"step_{global_step}_gen.wav")
|
||||
sf.write(file_wav_gen, generated_wave_gen, target_sample_rate)
|
||||
|
||||
if self.logger == "tensorboard":
|
||||
self.writer.add_audio("Audio/original", generated_wave_org, global_step, sample_rate=target_sample_rate)
|
||||
|
||||
self.writer.add_audio("Audio/generate", generated_wave_gen, global_step, sample_rate=target_sample_rate)
|
||||
|
||||
mel_org = mel_org
|
||||
mel_min, mel_max = mel_org.min(), mel_org.max()
|
||||
mel_norm = (mel_org - mel_min) / (mel_max - mel_min + 1e-8)
|
||||
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
|
||||
mel_colored = np.transpose(mel_colored, (2, 0, 1))
|
||||
|
||||
if self.logger == "tensorboard":
|
||||
self.writer.add_image("Mel/oginal", mel_colored, global_step, dataformats="CHW")
|
||||
|
||||
mel_colored_hwc = np.transpose(mel_colored, (1, 2, 0))
|
||||
file_gen_org = os.path.join(self.file_path_samples, f"step_{global_step}_org.png")
|
||||
plt.imsave(file_gen_org, mel_colored_hwc)
|
||||
|
||||
mel_gen = generated_mel_spec_gen[0]
|
||||
mel_min, mel_max = mel_gen.min(), mel_gen.max()
|
||||
mel_norm = (mel_gen - mel_min) / (mel_max - mel_min + 1e-8)
|
||||
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
|
||||
mel_colored = np.transpose(mel_colored, (2, 0, 1))
|
||||
|
||||
if self.logger == "tensorboard":
|
||||
self.writer.add_image("Mel/generate", mel_colored, global_step, dataformats="CHW")
|
||||
|
||||
mel_colored_hwc = np.transpose(mel_colored, (1, 2, 0))
|
||||
file_gen_gen = os.path.join(self.file_path_samples, f"step_{global_step}_gen.png")
|
||||
plt.imsave(file_gen_gen, mel_colored_hwc)
|
||||
|
||||
except Exception as e:
|
||||
print("An error occurred:", e)
|
||||
|
||||
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
||||
if exists(resumable_with_seed):
|
||||
generator = torch.Generator()
|
||||
@@ -270,6 +394,15 @@ class Trainer:
|
||||
loss, cond, pred = self.model(
|
||||
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
||||
)
|
||||
|
||||
# save 4 audio per save step
|
||||
if (
|
||||
self.accelerator.is_local_main_process
|
||||
and self.export_samples
|
||||
and global_step % (int(self.save_per_updates * 0.25) * self.grad_accumulation_steps) == 0
|
||||
):
|
||||
self.export_add_log(global_step, batch["mel"][0], text_inputs)
|
||||
|
||||
self.accelerator.backward(loss)
|
||||
|
||||
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
||||
@@ -285,7 +418,7 @@ class Trainer:
|
||||
global_step += 1
|
||||
|
||||
if self.accelerator.is_local_main_process:
|
||||
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
||||
self.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
||||
|
||||
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
||||
|
||||
|
||||
@@ -56,6 +56,14 @@ def parse_args():
|
||||
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--export_samples",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Export 4 audio and spect samples for the checkpoint audio, per step.",
|
||||
)
|
||||
parser.add_argument("--logger", type=str, default="wandb", choices=["none", "wandb", "tensorboard"], help="logger")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@@ -64,6 +72,7 @@ def parse_args():
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
||||
|
||||
# Model parameters based on experiment name
|
||||
@@ -136,6 +145,8 @@ def main():
|
||||
wandb_run_name=args.exp_name,
|
||||
wandb_resume_id=wandb_resume_id,
|
||||
last_per_steps=args.last_per_steps,
|
||||
logger=args.logger,
|
||||
export_samples=args.export_samples,
|
||||
)
|
||||
|
||||
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
||||
|
||||
@@ -447,6 +447,8 @@ def start_training(
|
||||
|
||||
cmd += f" --tokenizer {tokenizer_type} "
|
||||
|
||||
cmd += " --export_samples True --logger wandb "
|
||||
|
||||
print(cmd)
|
||||
|
||||
save_settings(
|
||||
@@ -1223,6 +1225,27 @@ def get_checkpoints_project(project_name, is_gradio=True):
|
||||
return files_checkpoints, selelect_checkpoint
|
||||
|
||||
|
||||
def get_audio_project(project_name, is_gradio=True):
|
||||
if project_name is None:
|
||||
return [], ""
|
||||
project_name = project_name.replace("_pinyin", "").replace("_char", "")
|
||||
|
||||
if os.path.isdir(path_project_ckpts):
|
||||
files_audios = glob(os.path.join(path_project_ckpts, project_name, "samples", "*.wav"))
|
||||
files_audios = sorted(files_audios, key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0]))
|
||||
|
||||
files_audios = [item.replace("_gen.wav", "") for item in files_audios if item.endswith("_gen.wav")]
|
||||
else:
|
||||
files_audios = []
|
||||
|
||||
selelect_checkpoint = None if not files_audios else files_audios[0]
|
||||
|
||||
if is_gradio:
|
||||
return gr.update(choices=files_audios, value=selelect_checkpoint)
|
||||
|
||||
return files_audios, selelect_checkpoint
|
||||
|
||||
|
||||
def get_gpu_stats():
|
||||
gpu_stats = ""
|
||||
|
||||
@@ -1290,6 +1313,21 @@ def get_combined_stats():
|
||||
return combined_stats
|
||||
|
||||
|
||||
def get_audio_select(file_sample):
|
||||
select_audio_org = file_sample
|
||||
select_audio_gen = file_sample
|
||||
select_image_org = file_sample
|
||||
select_image_gen = file_sample
|
||||
|
||||
if file_sample is not None:
|
||||
select_audio_org += "_org.wav"
|
||||
select_audio_gen += "_gen.wav"
|
||||
select_image_org += "_org.png"
|
||||
select_image_gen += "_gen.png"
|
||||
|
||||
return select_audio_org, select_audio_gen, select_image_org, select_image_gen
|
||||
|
||||
|
||||
with gr.Blocks() as app:
|
||||
gr.Markdown(
|
||||
"""
|
||||
@@ -1511,6 +1549,47 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
||||
|
||||
ch_stream = gr.Checkbox(label="stream output experiment.", value=True)
|
||||
txt_info_train = gr.Text(label="info", value="")
|
||||
|
||||
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
||||
|
||||
select_audio_org = select_audio
|
||||
select_audio_gen = select_audio
|
||||
select_image_org = select_audio
|
||||
select_image_gen = select_audio
|
||||
|
||||
if select_audio is not None:
|
||||
select_audio_org += "_org.wav"
|
||||
select_audio_gen += "_gen.wav"
|
||||
select_image_org += "_org.png"
|
||||
select_image_gen += "_gen.png"
|
||||
|
||||
with gr.Row():
|
||||
ch_list_audio = gr.Dropdown(
|
||||
choices=list_audios,
|
||||
value=select_audio,
|
||||
label="audios",
|
||||
allow_custom_value=True,
|
||||
scale=6,
|
||||
interactive=True,
|
||||
)
|
||||
bt_stream_audio = gr.Button("refresh", scale=1)
|
||||
bt_stream_audio.click(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
||||
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
||||
|
||||
with gr.Row():
|
||||
audio_org_stream = gr.Audio(label="original", type="filepath", value=select_audio_org)
|
||||
mel_org_stream = gr.Image(label="original", type="filepath", value=select_image_org)
|
||||
|
||||
with gr.Row():
|
||||
audio_gen_stream = gr.Audio(label="generate", type="filepath", value=select_audio_gen)
|
||||
mel_gen_stream = gr.Image(label="generate", type="filepath", value=select_image_gen)
|
||||
|
||||
ch_list_audio.change(
|
||||
fn=get_audio_select,
|
||||
inputs=[ch_list_audio],
|
||||
outputs=[audio_org_stream, audio_gen_stream, mel_org_stream, mel_gen_stream],
|
||||
)
|
||||
|
||||
start_button.click(
|
||||
fn=start_training,
|
||||
inputs=[
|
||||
|
||||
Reference in New Issue
Block a user