mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-12 15:50:07 -08:00
final structure. prepared to solve dependencies
This commit is contained in:
397
src/f5_tts/eval/utils_eval.py
Normal file
397
src/f5_tts/eval/utils_eval.py
Normal file
@@ -0,0 +1,397 @@
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import string
|
||||
from tqdm import tqdm
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
|
||||
from f5_tts.model.modules import MelSpec
|
||||
from f5_tts.model.utils import convert_char_to_pinyin
|
||||
from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
|
||||
|
||||
|
||||
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
||||
def get_seedtts_testset_metainfo(metalst):
|
||||
f = open(metalst)
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
metainfo = []
|
||||
for line in lines:
|
||||
if len(line.strip().split("|")) == 5:
|
||||
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
|
||||
elif len(line.strip().split("|")) == 4:
|
||||
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
|
||||
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
|
||||
if not os.path.isabs(prompt_wav):
|
||||
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
||||
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
|
||||
return metainfo
|
||||
|
||||
|
||||
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
|
||||
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
|
||||
f = open(metalst)
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
metainfo = []
|
||||
for line in lines:
|
||||
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
|
||||
|
||||
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
||||
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
|
||||
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
|
||||
|
||||
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
||||
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
|
||||
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
|
||||
|
||||
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
|
||||
|
||||
return metainfo
|
||||
|
||||
|
||||
# padded to max length mel batch
|
||||
def padded_mel_batch(ref_mels):
|
||||
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
|
||||
padded_ref_mels = []
|
||||
for mel in ref_mels:
|
||||
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0)
|
||||
padded_ref_mels.append(padded_ref_mel)
|
||||
padded_ref_mels = torch.stack(padded_ref_mels)
|
||||
padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
|
||||
return padded_ref_mels
|
||||
|
||||
|
||||
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
||||
|
||||
|
||||
def get_inference_prompt(
|
||||
metainfo,
|
||||
speed=1.0,
|
||||
tokenizer="pinyin",
|
||||
polyphone=True,
|
||||
target_sample_rate=24000,
|
||||
n_mel_channels=100,
|
||||
hop_length=256,
|
||||
target_rms=0.1,
|
||||
use_truth_duration=False,
|
||||
infer_batch_size=1,
|
||||
num_buckets=200,
|
||||
min_secs=3,
|
||||
max_secs=40,
|
||||
):
|
||||
prompts_all = []
|
||||
|
||||
min_tokens = min_secs * target_sample_rate // hop_length
|
||||
max_tokens = max_secs * target_sample_rate // hop_length
|
||||
|
||||
batch_accum = [0] * num_buckets
|
||||
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
|
||||
[[] for _ in range(num_buckets)] for _ in range(6)
|
||||
)
|
||||
|
||||
mel_spectrogram = MelSpec(
|
||||
target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
|
||||
)
|
||||
|
||||
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
|
||||
# Audio
|
||||
ref_audio, ref_sr = torchaudio.load(prompt_wav)
|
||||
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
|
||||
if ref_rms < target_rms:
|
||||
ref_audio = ref_audio * target_rms / ref_rms
|
||||
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
|
||||
if ref_sr != target_sample_rate:
|
||||
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
|
||||
ref_audio = resampler(ref_audio)
|
||||
|
||||
# Text
|
||||
if len(prompt_text[-1].encode("utf-8")) == 1:
|
||||
prompt_text = prompt_text + " "
|
||||
text = [prompt_text + gt_text]
|
||||
if tokenizer == "pinyin":
|
||||
text_list = convert_char_to_pinyin(text, polyphone=polyphone)
|
||||
else:
|
||||
text_list = text
|
||||
|
||||
# Duration, mel frame length
|
||||
ref_mel_len = ref_audio.shape[-1] // hop_length
|
||||
if use_truth_duration:
|
||||
gt_audio, gt_sr = torchaudio.load(gt_wav)
|
||||
if gt_sr != target_sample_rate:
|
||||
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
|
||||
gt_audio = resampler(gt_audio)
|
||||
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
|
||||
|
||||
# # test vocoder resynthesis
|
||||
# ref_audio = gt_audio
|
||||
else:
|
||||
ref_text_len = len(prompt_text.encode("utf-8"))
|
||||
gen_text_len = len(gt_text.encode("utf-8"))
|
||||
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
|
||||
|
||||
# to mel spectrogram
|
||||
ref_mel = mel_spectrogram(ref_audio)
|
||||
ref_mel = ref_mel.squeeze(0)
|
||||
|
||||
# deal with batch
|
||||
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
|
||||
assert (
|
||||
min_tokens <= total_mel_len <= max_tokens
|
||||
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
|
||||
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
|
||||
|
||||
utts[bucket_i].append(utt)
|
||||
ref_rms_list[bucket_i].append(ref_rms)
|
||||
ref_mels[bucket_i].append(ref_mel)
|
||||
ref_mel_lens[bucket_i].append(ref_mel_len)
|
||||
total_mel_lens[bucket_i].append(total_mel_len)
|
||||
final_text_list[bucket_i].extend(text_list)
|
||||
|
||||
batch_accum[bucket_i] += total_mel_len
|
||||
|
||||
if batch_accum[bucket_i] >= infer_batch_size:
|
||||
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
|
||||
prompts_all.append(
|
||||
(
|
||||
utts[bucket_i],
|
||||
ref_rms_list[bucket_i],
|
||||
padded_mel_batch(ref_mels[bucket_i]),
|
||||
ref_mel_lens[bucket_i],
|
||||
total_mel_lens[bucket_i],
|
||||
final_text_list[bucket_i],
|
||||
)
|
||||
)
|
||||
batch_accum[bucket_i] = 0
|
||||
(
|
||||
utts[bucket_i],
|
||||
ref_rms_list[bucket_i],
|
||||
ref_mels[bucket_i],
|
||||
ref_mel_lens[bucket_i],
|
||||
total_mel_lens[bucket_i],
|
||||
final_text_list[bucket_i],
|
||||
) = [], [], [], [], [], []
|
||||
|
||||
# add residual
|
||||
for bucket_i, bucket_frames in enumerate(batch_accum):
|
||||
if bucket_frames > 0:
|
||||
prompts_all.append(
|
||||
(
|
||||
utts[bucket_i],
|
||||
ref_rms_list[bucket_i],
|
||||
padded_mel_batch(ref_mels[bucket_i]),
|
||||
ref_mel_lens[bucket_i],
|
||||
total_mel_lens[bucket_i],
|
||||
final_text_list[bucket_i],
|
||||
)
|
||||
)
|
||||
# not only leave easy work for last workers
|
||||
random.seed(666)
|
||||
random.shuffle(prompts_all)
|
||||
|
||||
return prompts_all
|
||||
|
||||
|
||||
# get wav_res_ref_text of seed-tts test metalst
|
||||
# https://github.com/BytedanceSpeech/seed-tts-eval
|
||||
|
||||
|
||||
def get_seed_tts_test(metalst, gen_wav_dir, gpus):
|
||||
f = open(metalst)
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
|
||||
test_set_ = []
|
||||
for line in tqdm(lines):
|
||||
if len(line.strip().split("|")) == 5:
|
||||
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
|
||||
elif len(line.strip().split("|")) == 4:
|
||||
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
|
||||
|
||||
if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")):
|
||||
continue
|
||||
gen_wav = os.path.join(gen_wav_dir, utt + ".wav")
|
||||
if not os.path.isabs(prompt_wav):
|
||||
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
||||
|
||||
test_set_.append((gen_wav, prompt_wav, gt_text))
|
||||
|
||||
num_jobs = len(gpus)
|
||||
if num_jobs == 1:
|
||||
return [(gpus[0], test_set_)]
|
||||
|
||||
wav_per_job = len(test_set_) // num_jobs + 1
|
||||
test_set = []
|
||||
for i in range(num_jobs):
|
||||
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
|
||||
|
||||
return test_set
|
||||
|
||||
|
||||
# get librispeech test-clean cross sentence test
|
||||
|
||||
|
||||
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False):
|
||||
f = open(metalst)
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
|
||||
test_set_ = []
|
||||
for line in tqdm(lines):
|
||||
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
|
||||
|
||||
if eval_ground_truth:
|
||||
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
|
||||
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
|
||||
else:
|
||||
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")):
|
||||
raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
|
||||
gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav")
|
||||
|
||||
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
|
||||
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
|
||||
|
||||
test_set_.append((gen_wav, ref_wav, gen_txt))
|
||||
|
||||
num_jobs = len(gpus)
|
||||
if num_jobs == 1:
|
||||
return [(gpus[0], test_set_)]
|
||||
|
||||
wav_per_job = len(test_set_) // num_jobs + 1
|
||||
test_set = []
|
||||
for i in range(num_jobs):
|
||||
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
|
||||
|
||||
return test_set
|
||||
|
||||
|
||||
# load asr model
|
||||
|
||||
|
||||
def load_asr_model(lang, ckpt_dir=""):
|
||||
if lang == "zh":
|
||||
from funasr import AutoModel
|
||||
|
||||
model = AutoModel(
|
||||
model=os.path.join(ckpt_dir, "paraformer-zh"),
|
||||
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
|
||||
# punc_model = os.path.join(ckpt_dir, "ct-punc"),
|
||||
# spk_model = os.path.join(ckpt_dir, "cam++"),
|
||||
disable_update=True,
|
||||
) # following seed-tts setting
|
||||
elif lang == "en":
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
|
||||
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
||||
return model
|
||||
|
||||
|
||||
# WER Evaluation, the way Seed-TTS does
|
||||
|
||||
|
||||
def run_asr_wer(args):
|
||||
rank, lang, test_set, ckpt_dir = args
|
||||
|
||||
if lang == "zh":
|
||||
import zhconv
|
||||
|
||||
torch.cuda.set_device(rank)
|
||||
elif lang == "en":
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now."
|
||||
)
|
||||
|
||||
asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir)
|
||||
|
||||
from zhon.hanzi import punctuation
|
||||
|
||||
punctuation_all = punctuation + string.punctuation
|
||||
wers = []
|
||||
|
||||
from jiwer import compute_measures
|
||||
|
||||
for gen_wav, prompt_wav, truth in tqdm(test_set):
|
||||
if lang == "zh":
|
||||
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
|
||||
hypo = res[0]["text"]
|
||||
hypo = zhconv.convert(hypo, "zh-cn")
|
||||
elif lang == "en":
|
||||
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
|
||||
hypo = ""
|
||||
for segment in segments:
|
||||
hypo = hypo + " " + segment.text
|
||||
|
||||
# raw_truth = truth
|
||||
# raw_hypo = hypo
|
||||
|
||||
for x in punctuation_all:
|
||||
truth = truth.replace(x, "")
|
||||
hypo = hypo.replace(x, "")
|
||||
|
||||
truth = truth.replace(" ", " ")
|
||||
hypo = hypo.replace(" ", " ")
|
||||
|
||||
if lang == "zh":
|
||||
truth = " ".join([x for x in truth])
|
||||
hypo = " ".join([x for x in hypo])
|
||||
elif lang == "en":
|
||||
truth = truth.lower()
|
||||
hypo = hypo.lower()
|
||||
|
||||
measures = compute_measures(truth, hypo)
|
||||
wer = measures["wer"]
|
||||
|
||||
# ref_list = truth.split(" ")
|
||||
# subs = measures["substitutions"] / len(ref_list)
|
||||
# dele = measures["deletions"] / len(ref_list)
|
||||
# inse = measures["insertions"] / len(ref_list)
|
||||
|
||||
wers.append(wer)
|
||||
|
||||
return wers
|
||||
|
||||
|
||||
# SIM Evaluation
|
||||
|
||||
|
||||
def run_sim(args):
|
||||
rank, test_set, ckpt_dir = args
|
||||
device = f"cuda:{rank}"
|
||||
|
||||
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None)
|
||||
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
|
||||
model.load_state_dict(state_dict["model"], strict=False)
|
||||
|
||||
use_gpu = True if torch.cuda.is_available() else False
|
||||
if use_gpu:
|
||||
model = model.cuda(device)
|
||||
model.eval()
|
||||
|
||||
sim_list = []
|
||||
for wav1, wav2, truth in tqdm(test_set):
|
||||
wav1, sr1 = torchaudio.load(wav1)
|
||||
wav2, sr2 = torchaudio.load(wav2)
|
||||
|
||||
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
|
||||
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
|
||||
wav1 = resample1(wav1)
|
||||
wav2 = resample2(wav2)
|
||||
|
||||
if use_gpu:
|
||||
wav1 = wav1.cuda(device)
|
||||
wav2 = wav2.cuda(device)
|
||||
with torch.no_grad():
|
||||
emb1 = model(wav1)
|
||||
emb2 = model(wav2)
|
||||
|
||||
sim = F.cosine_similarity(emb1, emb2)[0].item()
|
||||
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
|
||||
sim_list.append(sim)
|
||||
|
||||
return sim_list
|
||||
@@ -11,7 +11,7 @@ import tomli
|
||||
from cached_path import cached_path
|
||||
|
||||
from f5_tts.model import DiT, UNetT
|
||||
from f5_tts.model.utils_infer import (
|
||||
from f5_tts.infer.utils_infer import (
|
||||
load_vocoder,
|
||||
load_model,
|
||||
preprocess_ref_audio_text,
|
||||
|
||||
@@ -28,15 +28,13 @@ def gpu_decorator(func):
|
||||
|
||||
|
||||
from f5_tts.model import DiT, UNetT
|
||||
from f5_tts.model.utils import (
|
||||
save_spectrogram,
|
||||
)
|
||||
from f5_tts.model.utils_infer import (
|
||||
from f5_tts.infer.utils_infer import (
|
||||
load_vocoder,
|
||||
load_model,
|
||||
preprocess_ref_audio_text,
|
||||
infer_process,
|
||||
remove_silence_for_generated_wav,
|
||||
save_spectrogram,
|
||||
)
|
||||
|
||||
vocos = load_vocoder()
|
||||
|
||||
@@ -10,8 +10,8 @@ from f5_tts.model.utils import (
|
||||
load_checkpoint,
|
||||
get_tokenizer,
|
||||
convert_char_to_pinyin,
|
||||
save_spectrogram,
|
||||
)
|
||||
from f5_tts.infer.utils_infer import save_spectrogram
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
|
||||
|
||||
@@ -4,6 +4,11 @@
|
||||
import re
|
||||
import tempfile
|
||||
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio
|
||||
@@ -14,7 +19,6 @@ from vocos import Vocos
|
||||
|
||||
from f5_tts.model import CFM
|
||||
from f5_tts.model.utils import (
|
||||
load_checkpoint,
|
||||
get_tokenizer,
|
||||
convert_char_to_pinyin,
|
||||
)
|
||||
@@ -104,6 +108,38 @@ def initialize_asr_pipeline(device=device):
|
||||
)
|
||||
|
||||
|
||||
# load model checkpoint for inference
|
||||
|
||||
|
||||
def load_checkpoint(model, ckpt_path, device, use_ema=True):
|
||||
if device == "cuda":
|
||||
model = model.half()
|
||||
|
||||
ckpt_type = ckpt_path.split(".")[-1]
|
||||
if ckpt_type == "safetensors":
|
||||
from safetensors.torch import load_file
|
||||
|
||||
checkpoint = load_file(ckpt_path)
|
||||
else:
|
||||
checkpoint = torch.load(ckpt_path, weights_only=True)
|
||||
|
||||
if use_ema:
|
||||
if ckpt_type == "safetensors":
|
||||
checkpoint = {"ema_model_state_dict": checkpoint}
|
||||
checkpoint["model_state_dict"] = {
|
||||
k.replace("ema_model.", ""): v
|
||||
for k, v in checkpoint["ema_model_state_dict"].items()
|
||||
if k not in ["initted", "step"]
|
||||
}
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
else:
|
||||
if ckpt_type == "safetensors":
|
||||
checkpoint = {"model_state_dict": checkpoint}
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
|
||||
return model.to(device)
|
||||
|
||||
|
||||
# load model for inference
|
||||
|
||||
|
||||
@@ -355,3 +391,14 @@ def remove_silence_for_generated_wav(filename):
|
||||
non_silent_wave += non_silent_seg
|
||||
aseg = non_silent_wave
|
||||
aseg.export(filename, format="wav")
|
||||
|
||||
|
||||
# save spectrogram
|
||||
|
||||
|
||||
def save_spectrogram(spectrogram, path):
|
||||
plt.figure(figsize=(12, 4))
|
||||
plt.imshow(spectrogram, origin="lower", aspect="auto")
|
||||
plt.colorbar()
|
||||
plt.savefig(path)
|
||||
plt.close()
|
||||
@@ -1,29 +1,16 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import math
|
||||
import random
|
||||
import string
|
||||
from importlib.resources import files
|
||||
from tqdm import tqdm
|
||||
from collections import defaultdict
|
||||
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pylab as plt
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import torchaudio
|
||||
|
||||
import jieba
|
||||
from pypinyin import lazy_pinyin, Style
|
||||
|
||||
from f5_tts.model.ecapa_tdnn import ECAPA_TDNN_SMALL
|
||||
from f5_tts.model.modules import MelSpec
|
||||
|
||||
|
||||
# seed everything
|
||||
|
||||
@@ -183,399 +170,6 @@ def convert_char_to_pinyin(text_list, polyphone=True):
|
||||
return final_text_list
|
||||
|
||||
|
||||
# save spectrogram
|
||||
def save_spectrogram(spectrogram, path):
|
||||
plt.figure(figsize=(12, 4))
|
||||
plt.imshow(spectrogram, origin="lower", aspect="auto")
|
||||
plt.colorbar()
|
||||
plt.savefig(path)
|
||||
plt.close()
|
||||
|
||||
|
||||
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
||||
def get_seedtts_testset_metainfo(metalst):
|
||||
f = open(metalst)
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
metainfo = []
|
||||
for line in lines:
|
||||
if len(line.strip().split("|")) == 5:
|
||||
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
|
||||
elif len(line.strip().split("|")) == 4:
|
||||
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
|
||||
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
|
||||
if not os.path.isabs(prompt_wav):
|
||||
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
||||
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
|
||||
return metainfo
|
||||
|
||||
|
||||
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
|
||||
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
|
||||
f = open(metalst)
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
metainfo = []
|
||||
for line in lines:
|
||||
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
|
||||
|
||||
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
||||
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
|
||||
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
|
||||
|
||||
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
||||
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
|
||||
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
|
||||
|
||||
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
|
||||
|
||||
return metainfo
|
||||
|
||||
|
||||
# padded to max length mel batch
|
||||
def padded_mel_batch(ref_mels):
|
||||
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
|
||||
padded_ref_mels = []
|
||||
for mel in ref_mels:
|
||||
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0)
|
||||
padded_ref_mels.append(padded_ref_mel)
|
||||
padded_ref_mels = torch.stack(padded_ref_mels)
|
||||
padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
|
||||
return padded_ref_mels
|
||||
|
||||
|
||||
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
||||
|
||||
|
||||
def get_inference_prompt(
|
||||
metainfo,
|
||||
speed=1.0,
|
||||
tokenizer="pinyin",
|
||||
polyphone=True,
|
||||
target_sample_rate=24000,
|
||||
n_mel_channels=100,
|
||||
hop_length=256,
|
||||
target_rms=0.1,
|
||||
use_truth_duration=False,
|
||||
infer_batch_size=1,
|
||||
num_buckets=200,
|
||||
min_secs=3,
|
||||
max_secs=40,
|
||||
):
|
||||
prompts_all = []
|
||||
|
||||
min_tokens = min_secs * target_sample_rate // hop_length
|
||||
max_tokens = max_secs * target_sample_rate // hop_length
|
||||
|
||||
batch_accum = [0] * num_buckets
|
||||
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
|
||||
[[] for _ in range(num_buckets)] for _ in range(6)
|
||||
)
|
||||
|
||||
mel_spectrogram = MelSpec(
|
||||
target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
|
||||
)
|
||||
|
||||
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
|
||||
# Audio
|
||||
ref_audio, ref_sr = torchaudio.load(prompt_wav)
|
||||
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
|
||||
if ref_rms < target_rms:
|
||||
ref_audio = ref_audio * target_rms / ref_rms
|
||||
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
|
||||
if ref_sr != target_sample_rate:
|
||||
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
|
||||
ref_audio = resampler(ref_audio)
|
||||
|
||||
# Text
|
||||
if len(prompt_text[-1].encode("utf-8")) == 1:
|
||||
prompt_text = prompt_text + " "
|
||||
text = [prompt_text + gt_text]
|
||||
if tokenizer == "pinyin":
|
||||
text_list = convert_char_to_pinyin(text, polyphone=polyphone)
|
||||
else:
|
||||
text_list = text
|
||||
|
||||
# Duration, mel frame length
|
||||
ref_mel_len = ref_audio.shape[-1] // hop_length
|
||||
if use_truth_duration:
|
||||
gt_audio, gt_sr = torchaudio.load(gt_wav)
|
||||
if gt_sr != target_sample_rate:
|
||||
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
|
||||
gt_audio = resampler(gt_audio)
|
||||
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
|
||||
|
||||
# # test vocoder resynthesis
|
||||
# ref_audio = gt_audio
|
||||
else:
|
||||
ref_text_len = len(prompt_text.encode("utf-8"))
|
||||
gen_text_len = len(gt_text.encode("utf-8"))
|
||||
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
|
||||
|
||||
# to mel spectrogram
|
||||
ref_mel = mel_spectrogram(ref_audio)
|
||||
ref_mel = ref_mel.squeeze(0)
|
||||
|
||||
# deal with batch
|
||||
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
|
||||
assert (
|
||||
min_tokens <= total_mel_len <= max_tokens
|
||||
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
|
||||
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
|
||||
|
||||
utts[bucket_i].append(utt)
|
||||
ref_rms_list[bucket_i].append(ref_rms)
|
||||
ref_mels[bucket_i].append(ref_mel)
|
||||
ref_mel_lens[bucket_i].append(ref_mel_len)
|
||||
total_mel_lens[bucket_i].append(total_mel_len)
|
||||
final_text_list[bucket_i].extend(text_list)
|
||||
|
||||
batch_accum[bucket_i] += total_mel_len
|
||||
|
||||
if batch_accum[bucket_i] >= infer_batch_size:
|
||||
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
|
||||
prompts_all.append(
|
||||
(
|
||||
utts[bucket_i],
|
||||
ref_rms_list[bucket_i],
|
||||
padded_mel_batch(ref_mels[bucket_i]),
|
||||
ref_mel_lens[bucket_i],
|
||||
total_mel_lens[bucket_i],
|
||||
final_text_list[bucket_i],
|
||||
)
|
||||
)
|
||||
batch_accum[bucket_i] = 0
|
||||
(
|
||||
utts[bucket_i],
|
||||
ref_rms_list[bucket_i],
|
||||
ref_mels[bucket_i],
|
||||
ref_mel_lens[bucket_i],
|
||||
total_mel_lens[bucket_i],
|
||||
final_text_list[bucket_i],
|
||||
) = [], [], [], [], [], []
|
||||
|
||||
# add residual
|
||||
for bucket_i, bucket_frames in enumerate(batch_accum):
|
||||
if bucket_frames > 0:
|
||||
prompts_all.append(
|
||||
(
|
||||
utts[bucket_i],
|
||||
ref_rms_list[bucket_i],
|
||||
padded_mel_batch(ref_mels[bucket_i]),
|
||||
ref_mel_lens[bucket_i],
|
||||
total_mel_lens[bucket_i],
|
||||
final_text_list[bucket_i],
|
||||
)
|
||||
)
|
||||
# not only leave easy work for last workers
|
||||
random.seed(666)
|
||||
random.shuffle(prompts_all)
|
||||
|
||||
return prompts_all
|
||||
|
||||
|
||||
# get wav_res_ref_text of seed-tts test metalst
|
||||
# https://github.com/BytedanceSpeech/seed-tts-eval
|
||||
|
||||
|
||||
def get_seed_tts_test(metalst, gen_wav_dir, gpus):
|
||||
f = open(metalst)
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
|
||||
test_set_ = []
|
||||
for line in tqdm(lines):
|
||||
if len(line.strip().split("|")) == 5:
|
||||
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
|
||||
elif len(line.strip().split("|")) == 4:
|
||||
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
|
||||
|
||||
if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")):
|
||||
continue
|
||||
gen_wav = os.path.join(gen_wav_dir, utt + ".wav")
|
||||
if not os.path.isabs(prompt_wav):
|
||||
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
||||
|
||||
test_set_.append((gen_wav, prompt_wav, gt_text))
|
||||
|
||||
num_jobs = len(gpus)
|
||||
if num_jobs == 1:
|
||||
return [(gpus[0], test_set_)]
|
||||
|
||||
wav_per_job = len(test_set_) // num_jobs + 1
|
||||
test_set = []
|
||||
for i in range(num_jobs):
|
||||
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
|
||||
|
||||
return test_set
|
||||
|
||||
|
||||
# get librispeech test-clean cross sentence test
|
||||
|
||||
|
||||
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False):
|
||||
f = open(metalst)
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
|
||||
test_set_ = []
|
||||
for line in tqdm(lines):
|
||||
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
|
||||
|
||||
if eval_ground_truth:
|
||||
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
|
||||
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
|
||||
else:
|
||||
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")):
|
||||
raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
|
||||
gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav")
|
||||
|
||||
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
|
||||
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
|
||||
|
||||
test_set_.append((gen_wav, ref_wav, gen_txt))
|
||||
|
||||
num_jobs = len(gpus)
|
||||
if num_jobs == 1:
|
||||
return [(gpus[0], test_set_)]
|
||||
|
||||
wav_per_job = len(test_set_) // num_jobs + 1
|
||||
test_set = []
|
||||
for i in range(num_jobs):
|
||||
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
|
||||
|
||||
return test_set
|
||||
|
||||
|
||||
# load asr model
|
||||
|
||||
|
||||
def load_asr_model(lang, ckpt_dir=""):
|
||||
if lang == "zh":
|
||||
from funasr import AutoModel
|
||||
|
||||
model = AutoModel(
|
||||
model=os.path.join(ckpt_dir, "paraformer-zh"),
|
||||
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
|
||||
# punc_model = os.path.join(ckpt_dir, "ct-punc"),
|
||||
# spk_model = os.path.join(ckpt_dir, "cam++"),
|
||||
disable_update=True,
|
||||
) # following seed-tts setting
|
||||
elif lang == "en":
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
|
||||
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
||||
return model
|
||||
|
||||
|
||||
# WER Evaluation, the way Seed-TTS does
|
||||
|
||||
|
||||
def run_asr_wer(args):
|
||||
rank, lang, test_set, ckpt_dir = args
|
||||
|
||||
if lang == "zh":
|
||||
import zhconv
|
||||
|
||||
torch.cuda.set_device(rank)
|
||||
elif lang == "en":
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now."
|
||||
)
|
||||
|
||||
asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir)
|
||||
|
||||
from zhon.hanzi import punctuation
|
||||
|
||||
punctuation_all = punctuation + string.punctuation
|
||||
wers = []
|
||||
|
||||
from jiwer import compute_measures
|
||||
|
||||
for gen_wav, prompt_wav, truth in tqdm(test_set):
|
||||
if lang == "zh":
|
||||
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
|
||||
hypo = res[0]["text"]
|
||||
hypo = zhconv.convert(hypo, "zh-cn")
|
||||
elif lang == "en":
|
||||
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
|
||||
hypo = ""
|
||||
for segment in segments:
|
||||
hypo = hypo + " " + segment.text
|
||||
|
||||
# raw_truth = truth
|
||||
# raw_hypo = hypo
|
||||
|
||||
for x in punctuation_all:
|
||||
truth = truth.replace(x, "")
|
||||
hypo = hypo.replace(x, "")
|
||||
|
||||
truth = truth.replace(" ", " ")
|
||||
hypo = hypo.replace(" ", " ")
|
||||
|
||||
if lang == "zh":
|
||||
truth = " ".join([x for x in truth])
|
||||
hypo = " ".join([x for x in hypo])
|
||||
elif lang == "en":
|
||||
truth = truth.lower()
|
||||
hypo = hypo.lower()
|
||||
|
||||
measures = compute_measures(truth, hypo)
|
||||
wer = measures["wer"]
|
||||
|
||||
# ref_list = truth.split(" ")
|
||||
# subs = measures["substitutions"] / len(ref_list)
|
||||
# dele = measures["deletions"] / len(ref_list)
|
||||
# inse = measures["insertions"] / len(ref_list)
|
||||
|
||||
wers.append(wer)
|
||||
|
||||
return wers
|
||||
|
||||
|
||||
# SIM Evaluation
|
||||
|
||||
|
||||
def run_sim(args):
|
||||
rank, test_set, ckpt_dir = args
|
||||
device = f"cuda:{rank}"
|
||||
|
||||
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None)
|
||||
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
|
||||
model.load_state_dict(state_dict["model"], strict=False)
|
||||
|
||||
use_gpu = True if torch.cuda.is_available() else False
|
||||
if use_gpu:
|
||||
model = model.cuda(device)
|
||||
model.eval()
|
||||
|
||||
sim_list = []
|
||||
for wav1, wav2, truth in tqdm(test_set):
|
||||
wav1, sr1 = torchaudio.load(wav1)
|
||||
wav2, sr2 = torchaudio.load(wav2)
|
||||
|
||||
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
|
||||
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
|
||||
wav1 = resample1(wav1)
|
||||
wav2 = resample2(wav2)
|
||||
|
||||
if use_gpu:
|
||||
wav1 = wav1.cuda(device)
|
||||
wav2 = wav2.cuda(device)
|
||||
with torch.no_grad():
|
||||
emb1 = model(wav1)
|
||||
emb2 = model(wav2)
|
||||
|
||||
sim = F.cosine_similarity(emb1, emb2)[0].item()
|
||||
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
|
||||
sim_list.append(sim)
|
||||
|
||||
return sim_list
|
||||
|
||||
|
||||
# filter func for dirty data with many repetitions
|
||||
|
||||
|
||||
@@ -588,35 +182,3 @@ def repetition_found(text, length=2, tolerance=10):
|
||||
if count > tolerance:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
# load model checkpoint for inference
|
||||
|
||||
|
||||
def load_checkpoint(model, ckpt_path, device, use_ema=True):
|
||||
if device == "cuda":
|
||||
model = model.half()
|
||||
|
||||
ckpt_type = ckpt_path.split(".")[-1]
|
||||
if ckpt_type == "safetensors":
|
||||
from safetensors.torch import load_file
|
||||
|
||||
checkpoint = load_file(ckpt_path)
|
||||
else:
|
||||
checkpoint = torch.load(ckpt_path, weights_only=True)
|
||||
|
||||
if use_ema:
|
||||
if ckpt_type == "safetensors":
|
||||
checkpoint = {"ema_model_state_dict": checkpoint}
|
||||
checkpoint["model_state_dict"] = {
|
||||
k.replace("ema_model.", ""): v
|
||||
for k, v in checkpoint["ema_model_state_dict"].items()
|
||||
if k not in ["initted", "step"]
|
||||
}
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
else:
|
||||
if ckpt_type == "safetensors":
|
||||
checkpoint = {"model_state_dict": checkpoint}
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
|
||||
return model.to(device)
|
||||
|
||||
@@ -1,138 +1,138 @@
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
from pathlib import Path
|
||||
import json
|
||||
import shutil
|
||||
import argparse
|
||||
|
||||
import csv
|
||||
import torchaudio
|
||||
from tqdm import tqdm
|
||||
from datasets.arrow_writer import ArrowWriter
|
||||
|
||||
from f5_tts.model.utils import (
|
||||
convert_char_to_pinyin,
|
||||
)
|
||||
|
||||
PRETRAINED_VOCAB_PATH = Path(__file__).parent.parent / "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
||||
|
||||
|
||||
def is_csv_wavs_format(input_dataset_dir):
|
||||
fpath = Path(input_dataset_dir)
|
||||
metadata = fpath / "metadata.csv"
|
||||
wavs = fpath / "wavs"
|
||||
return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir()
|
||||
|
||||
|
||||
def prepare_csv_wavs_dir(input_dir):
|
||||
assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}"
|
||||
input_dir = Path(input_dir)
|
||||
metadata_path = input_dir / "metadata.csv"
|
||||
audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix())
|
||||
|
||||
sub_result, durations = [], []
|
||||
vocab_set = set()
|
||||
polyphone = True
|
||||
for audio_path, text in audio_path_text_pairs:
|
||||
if not Path(audio_path).exists():
|
||||
print(f"audio {audio_path} not found, skipping")
|
||||
continue
|
||||
audio_duration = get_audio_duration(audio_path)
|
||||
# assume tokenizer = "pinyin" ("pinyin" | "char")
|
||||
text = convert_char_to_pinyin([text], polyphone=polyphone)[0]
|
||||
sub_result.append({"audio_path": audio_path, "text": text, "duration": audio_duration})
|
||||
durations.append(audio_duration)
|
||||
vocab_set.update(list(text))
|
||||
|
||||
return sub_result, durations, vocab_set
|
||||
|
||||
|
||||
def get_audio_duration(audio_path):
|
||||
audio, sample_rate = torchaudio.load(audio_path)
|
||||
num_channels = audio.shape[0]
|
||||
return audio.shape[1] / (sample_rate * num_channels)
|
||||
|
||||
|
||||
def read_audio_text_pairs(csv_file_path):
|
||||
audio_text_pairs = []
|
||||
|
||||
parent = Path(csv_file_path).parent
|
||||
with open(csv_file_path, mode="r", newline="", encoding="utf-8") as csvfile:
|
||||
reader = csv.reader(csvfile, delimiter="|")
|
||||
next(reader) # Skip the header row
|
||||
for row in reader:
|
||||
if len(row) >= 2:
|
||||
audio_file = row[0].strip() # First column: audio file path
|
||||
text = row[1].strip() # Second column: text
|
||||
audio_file_path = parent / audio_file
|
||||
audio_text_pairs.append((audio_file_path.as_posix(), text))
|
||||
|
||||
return audio_text_pairs
|
||||
|
||||
|
||||
def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune):
|
||||
out_dir = Path(out_dir)
|
||||
# save preprocessed dataset to disk
|
||||
out_dir.mkdir(exist_ok=True, parents=True)
|
||||
print(f"\nSaving to {out_dir} ...")
|
||||
|
||||
# dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) # oom
|
||||
# dataset.save_to_disk(f"data/{dataset_name}/raw", max_shard_size="2GB")
|
||||
raw_arrow_path = out_dir / "raw.arrow"
|
||||
with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=1) as writer:
|
||||
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
||||
writer.write(line)
|
||||
|
||||
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
||||
dur_json_path = out_dir / "duration.json"
|
||||
with open(dur_json_path.as_posix(), "w", encoding="utf-8") as f:
|
||||
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
||||
|
||||
# vocab map, i.e. tokenizer
|
||||
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
|
||||
# if tokenizer == "pinyin":
|
||||
# text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
|
||||
voca_out_path = out_dir / "vocab.txt"
|
||||
with open(voca_out_path.as_posix(), "w") as f:
|
||||
for vocab in sorted(text_vocab_set):
|
||||
f.write(vocab + "\n")
|
||||
|
||||
if is_finetune:
|
||||
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix()
|
||||
shutil.copy2(file_vocab_finetune, voca_out_path)
|
||||
else:
|
||||
with open(voca_out_path, "w") as f:
|
||||
for vocab in sorted(text_vocab_set):
|
||||
f.write(vocab + "\n")
|
||||
|
||||
dataset_name = out_dir.stem
|
||||
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
||||
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
||||
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
||||
|
||||
|
||||
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True):
|
||||
if is_finetune:
|
||||
assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}"
|
||||
sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir)
|
||||
save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune)
|
||||
|
||||
|
||||
def cli():
|
||||
# finetune: python scripts/prepare_csv_wavs.py /path/to/input_dir /path/to/output_dir_pinyin
|
||||
# pretrain: python scripts/prepare_csv_wavs.py /path/to/output_dir_pinyin --pretrain
|
||||
parser = argparse.ArgumentParser(description="Prepare and save dataset.")
|
||||
parser.add_argument("inp_dir", type=str, help="Input directory containing the data.")
|
||||
parser.add_argument("out_dir", type=str, help="Output directory to save the prepared data.")
|
||||
parser.add_argument("--pretrain", action="store_true", help="Enable for new pretrain, otherwise is a fine-tune")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cli()
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
from pathlib import Path
|
||||
import json
|
||||
import shutil
|
||||
import argparse
|
||||
|
||||
import csv
|
||||
import torchaudio
|
||||
from tqdm import tqdm
|
||||
from datasets.arrow_writer import ArrowWriter
|
||||
|
||||
from f5_tts.model.utils import (
|
||||
convert_char_to_pinyin,
|
||||
)
|
||||
|
||||
PRETRAINED_VOCAB_PATH = Path(__file__).parent.parent / "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
||||
|
||||
|
||||
def is_csv_wavs_format(input_dataset_dir):
|
||||
fpath = Path(input_dataset_dir)
|
||||
metadata = fpath / "metadata.csv"
|
||||
wavs = fpath / "wavs"
|
||||
return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir()
|
||||
|
||||
|
||||
def prepare_csv_wavs_dir(input_dir):
|
||||
assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}"
|
||||
input_dir = Path(input_dir)
|
||||
metadata_path = input_dir / "metadata.csv"
|
||||
audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix())
|
||||
|
||||
sub_result, durations = [], []
|
||||
vocab_set = set()
|
||||
polyphone = True
|
||||
for audio_path, text in audio_path_text_pairs:
|
||||
if not Path(audio_path).exists():
|
||||
print(f"audio {audio_path} not found, skipping")
|
||||
continue
|
||||
audio_duration = get_audio_duration(audio_path)
|
||||
# assume tokenizer = "pinyin" ("pinyin" | "char")
|
||||
text = convert_char_to_pinyin([text], polyphone=polyphone)[0]
|
||||
sub_result.append({"audio_path": audio_path, "text": text, "duration": audio_duration})
|
||||
durations.append(audio_duration)
|
||||
vocab_set.update(list(text))
|
||||
|
||||
return sub_result, durations, vocab_set
|
||||
|
||||
|
||||
def get_audio_duration(audio_path):
|
||||
audio, sample_rate = torchaudio.load(audio_path)
|
||||
num_channels = audio.shape[0]
|
||||
return audio.shape[1] / (sample_rate * num_channels)
|
||||
|
||||
|
||||
def read_audio_text_pairs(csv_file_path):
|
||||
audio_text_pairs = []
|
||||
|
||||
parent = Path(csv_file_path).parent
|
||||
with open(csv_file_path, mode="r", newline="", encoding="utf-8") as csvfile:
|
||||
reader = csv.reader(csvfile, delimiter="|")
|
||||
next(reader) # Skip the header row
|
||||
for row in reader:
|
||||
if len(row) >= 2:
|
||||
audio_file = row[0].strip() # First column: audio file path
|
||||
text = row[1].strip() # Second column: text
|
||||
audio_file_path = parent / audio_file
|
||||
audio_text_pairs.append((audio_file_path.as_posix(), text))
|
||||
|
||||
return audio_text_pairs
|
||||
|
||||
|
||||
def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune):
|
||||
out_dir = Path(out_dir)
|
||||
# save preprocessed dataset to disk
|
||||
out_dir.mkdir(exist_ok=True, parents=True)
|
||||
print(f"\nSaving to {out_dir} ...")
|
||||
|
||||
# dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) # oom
|
||||
# dataset.save_to_disk(f"data/{dataset_name}/raw", max_shard_size="2GB")
|
||||
raw_arrow_path = out_dir / "raw.arrow"
|
||||
with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=1) as writer:
|
||||
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
||||
writer.write(line)
|
||||
|
||||
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
||||
dur_json_path = out_dir / "duration.json"
|
||||
with open(dur_json_path.as_posix(), "w", encoding="utf-8") as f:
|
||||
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
||||
|
||||
# vocab map, i.e. tokenizer
|
||||
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
|
||||
# if tokenizer == "pinyin":
|
||||
# text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
|
||||
voca_out_path = out_dir / "vocab.txt"
|
||||
with open(voca_out_path.as_posix(), "w") as f:
|
||||
for vocab in sorted(text_vocab_set):
|
||||
f.write(vocab + "\n")
|
||||
|
||||
if is_finetune:
|
||||
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix()
|
||||
shutil.copy2(file_vocab_finetune, voca_out_path)
|
||||
else:
|
||||
with open(voca_out_path, "w") as f:
|
||||
for vocab in sorted(text_vocab_set):
|
||||
f.write(vocab + "\n")
|
||||
|
||||
dataset_name = out_dir.stem
|
||||
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
||||
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
||||
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
||||
|
||||
|
||||
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True):
|
||||
if is_finetune:
|
||||
assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}"
|
||||
sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir)
|
||||
save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune)
|
||||
|
||||
|
||||
def cli():
|
||||
# finetune: python scripts/prepare_csv_wavs.py /path/to/input_dir /path/to/output_dir_pinyin
|
||||
# pretrain: python scripts/prepare_csv_wavs.py /path/to/output_dir_pinyin --pretrain
|
||||
parser = argparse.ArgumentParser(description="Prepare and save dataset.")
|
||||
parser.add_argument("inp_dir", type=str, help="Input directory containing the data.")
|
||||
parser.add_argument("out_dir", type=str, help="Output directory to save the prepared data.")
|
||||
parser.add_argument("--pretrain", action="store_true", help="Enable for new pretrain, otherwise is a fine-tune")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cli()
|
||||
Reference in New Issue
Block a user