mirror of
https://github.com/coding-horror/basic-computer-games.git
synced 2025-12-28 13:46:06 -08:00
Merge pull request #820 from jonfetterdegges/main
Add Rust implementation of 55_Life
This commit is contained in:
8
55_Life/rust/Cargo.toml
Normal file
8
55_Life/rust/Cargo.toml
Normal file
@@ -0,0 +1,8 @@
|
||||
[package]
|
||||
name = "rust"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
22
55_Life/rust/README.md
Normal file
22
55_Life/rust/README.md
Normal file
@@ -0,0 +1,22 @@
|
||||
# Conway's Life
|
||||
|
||||
Original from David Ahl's _Basic Computer Games_, downloaded from http://www.vintage-basic.net/games.html.
|
||||
|
||||
Ported to Rust by Jon Fetter-Degges
|
||||
|
||||
Developed and tested on Rust 1.64.0
|
||||
|
||||
## How to Run
|
||||
|
||||
Install Rust using the instructions at [rust-lang.org](https://www.rust-lang.org/tools/install).
|
||||
|
||||
At a command or shell prompt in the `rust` subdirectory, enter `cargo run`.
|
||||
|
||||
## Differences from Original Behavior
|
||||
|
||||
* The simulation stops if all cells die.
|
||||
* `.` at the beginning of an input line is supported but optional.
|
||||
* Input of more than 66 columns is rejected. Input will automatically terminate after 20 rows. Beyond these bounds, the original
|
||||
implementation would have marked the board as invalid, and beyond 68 cols/24 rows it would have had an out of bounds array access.
|
||||
* The check for the string "DONE" at the end of input is case-independent.
|
||||
* The program pauses for half a second between each generation.
|
||||
275
55_Life/rust/src/main.rs
Normal file
275
55_Life/rust/src/main.rs
Normal file
@@ -0,0 +1,275 @@
|
||||
// Rust implementation of the "Basic Computer Games" version of Conway's Life
|
||||
//
|
||||
// Jon Fetter-Degges
|
||||
// October 2022
|
||||
|
||||
// I am a Rust newbie. Corrections and suggestions are welcome.
|
||||
|
||||
use std::{cmp, fmt, io, thread, time};
|
||||
|
||||
// The BASIC implementation uses integers to represent the state of each cell: 1 is
|
||||
// alive, 2 is about to die, 3 is about to be born, 0 is dead. Here, we'll use an enum
|
||||
// instead.
|
||||
// Deriving Copy (which requires Clone) allows us to use this enum value in assignments,
|
||||
// and deriving Eq (or PartialEq) allows us to use the == operator. These need to be
|
||||
// explicitly specified because some enums may have associated data that makes copies and
|
||||
// comparisons more complicated or expensive.
|
||||
#[derive(Clone, Copy, PartialEq, Eq)]
|
||||
enum CellState {
|
||||
Empty,
|
||||
Alive,
|
||||
AboutToDie,
|
||||
AboutToBeBorn,
|
||||
}
|
||||
|
||||
// Support direct printing of the cell. In this program cells will only be Alive or Empty
|
||||
// when they are printed.
|
||||
impl fmt::Display for CellState {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
let rep = match *self {
|
||||
CellState::Empty => ' ',
|
||||
CellState::Alive => '*',
|
||||
CellState::AboutToDie => 'o',
|
||||
CellState::AboutToBeBorn => '.',
|
||||
};
|
||||
write!(f, "{}", rep)
|
||||
}
|
||||
}
|
||||
|
||||
// Following the BASIC implementation, we will bound the board at 24 rows x 70 columns.
|
||||
// The board is an array of CellState. Using an array of arrays gives us bounds checking
|
||||
// in both dimensions.
|
||||
const HEIGHT: usize = 24;
|
||||
const WIDTH: usize = 70;
|
||||
|
||||
struct Board {
|
||||
cells: [[CellState; WIDTH]; HEIGHT],
|
||||
min_row: usize,
|
||||
max_row: usize,
|
||||
min_col: usize,
|
||||
max_col: usize,
|
||||
population: usize,
|
||||
generation: usize,
|
||||
invalid: bool,
|
||||
}
|
||||
|
||||
impl Board {
|
||||
fn new() -> Board {
|
||||
Board {
|
||||
cells: [[CellState::Empty; WIDTH]; HEIGHT],
|
||||
min_row: 0,
|
||||
max_row: 0,
|
||||
min_col: 0,
|
||||
max_col: 0,
|
||||
population: 0,
|
||||
generation: 0,
|
||||
invalid: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
println!(); println!(); println!();
|
||||
println!("{:33}{}", " ", "Life");
|
||||
println!("{:14}{}", " ", "Creative Computing Morristown, New Jersey");
|
||||
println!("Enter your pattern: ");
|
||||
let mut board = parse_pattern(get_pattern());
|
||||
loop {
|
||||
finish_cell_transitions(&mut board);
|
||||
print_board(&board);
|
||||
mark_cell_transitions(&mut board);
|
||||
if board.population == 0 {
|
||||
break; // this isn't in the original implementation but it seemed better than
|
||||
// spewing blank screens
|
||||
}
|
||||
delay();
|
||||
}
|
||||
}
|
||||
|
||||
fn get_pattern() -> Vec<Vec<char>> {
|
||||
let max_line_len = WIDTH - 4;
|
||||
let max_line_count = HEIGHT - 4;
|
||||
let mut lines = Vec::new();
|
||||
loop {
|
||||
let mut line = String::new();
|
||||
// read_line reads into the buffer (appending if it's not empty). It returns the
|
||||
// number of characters read, including the newline. This will be 0 on EOF.
|
||||
// unwrap() will panic and terminate the program if there is an error reading
|
||||
// from stdin. That's reasonable behavior in this case.
|
||||
let nread = io::stdin().read_line(&mut line).unwrap();
|
||||
let line = line.trim_end();
|
||||
if nread == 0 || line.eq_ignore_ascii_case("DONE") {
|
||||
return lines;
|
||||
}
|
||||
// Handle Unicode by converting the string to a vector of characters up front. We
|
||||
// do this here because we check the number of characters several times, so we
|
||||
// might as well just do the Unicode parsing once.
|
||||
let line = Vec::from_iter(line.chars());
|
||||
if line.len() > max_line_len {
|
||||
println!("Line too long - the maximum is {max_line_len} characters.");
|
||||
continue;
|
||||
}
|
||||
lines.push(line);
|
||||
if lines.len() == max_line_count {
|
||||
println!("Maximum line count reached. Starting simulation.");
|
||||
return lines;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_pattern(rows: Vec<Vec<char>>) -> Board {
|
||||
// This function assumes that the input pattern in rows is in-bounds. If the pattern
|
||||
// is too large, this function will panic. get_pattern checks the size of the input,
|
||||
// so it is safe to call this function with its results.
|
||||
|
||||
let mut board = Board::new();
|
||||
|
||||
// The BASIC implementation puts the pattern roughly in the center of the board,
|
||||
// assuming that there are no blank rows at the beginning or end, or blanks entered
|
||||
// at the beginning or end of every row. It wouldn't be hard to check for that, but
|
||||
// for now we'll preserve the original behavior.
|
||||
let nrows = rows.len();
|
||||
// If rows is empty, the call to max will return None. The unwrap_or then provides a
|
||||
// default value
|
||||
let ncols = rows.iter().map(|l| l.len()).max().unwrap_or(0);
|
||||
|
||||
// The min and max values here are unsigned. If nrows >= 24 or ncols >= 68, these
|
||||
// assignments will panic - they do not wrap around unless we use a function with
|
||||
// that specific behavior. Again, we expect bounds checking on the input before this
|
||||
// function is called.
|
||||
board.min_row = 11 - nrows / 2;
|
||||
board.min_col = 33 - ncols / 2;
|
||||
board.max_row = board.min_row + nrows - 1;
|
||||
board.max_col = board.min_col + ncols - 1;
|
||||
|
||||
// Loop over the rows provided. enumerate() augments the iterator with an index.
|
||||
for (row_index, pattern) in rows.iter().enumerate() {
|
||||
let row = board.min_row + row_index;
|
||||
// Now loop over the non-empty cells in the current row. filter_map takes a
|
||||
// closure that returns an Option. If the Option is None, filter_map filters out
|
||||
// that entry from the for loop. If it's Some(x), filter_map executes the loop
|
||||
// body with the value x.
|
||||
for col in pattern.iter().enumerate().filter_map(|(col_index, chr)| {
|
||||
if *chr == ' ' || (*chr == '.' && col_index == 0) {
|
||||
None
|
||||
} else {
|
||||
Some(board.min_col + col_index)
|
||||
}
|
||||
}) {
|
||||
board.cells[row][col] = CellState::Alive;
|
||||
board.population += 1;
|
||||
}
|
||||
}
|
||||
|
||||
board
|
||||
}
|
||||
|
||||
fn finish_cell_transitions(board: &mut Board) {
|
||||
// In the BASIC implementation, this happens in the same loop that prints the board.
|
||||
// We're breaking it out to improve separation of concerns.
|
||||
let mut min_row = HEIGHT - 1;
|
||||
let mut max_row = 0usize;
|
||||
let mut min_col = WIDTH - 1;
|
||||
let mut max_col = 0usize;
|
||||
for row_index in board.min_row-1..=board.max_row+1 {
|
||||
let mut any_alive_this_row = false;
|
||||
for col_index in board.min_col-1..=board.max_col+1 {
|
||||
let cell = &mut board.cells[row_index][col_index];
|
||||
if *cell == CellState::AboutToBeBorn {
|
||||
*cell = CellState::Alive;
|
||||
board.population += 1;
|
||||
} else if *cell == CellState::AboutToDie {
|
||||
*cell = CellState::Empty;
|
||||
board.population -= 1;
|
||||
}
|
||||
if *cell == CellState::Alive {
|
||||
any_alive_this_row = true;
|
||||
min_col = cmp::min(min_col, col_index);
|
||||
max_col = cmp::max(max_col, col_index);
|
||||
}
|
||||
}
|
||||
if any_alive_this_row {
|
||||
min_row = cmp::min(min_row, row_index);
|
||||
max_row = cmp::max(max_row, row_index);
|
||||
}
|
||||
}
|
||||
// If anything is alive within two cells of the boundary, mark the board invalid and
|
||||
// clamp the bounds. We need a two-cell margin because we'll count neighbors on cells
|
||||
// one space outside the min/max, and when we count neighbors we go out by an
|
||||
// additional space.
|
||||
if min_row < 2 {
|
||||
min_row = 2;
|
||||
board.invalid = true;
|
||||
}
|
||||
if max_row > HEIGHT - 3 {
|
||||
max_row = HEIGHT - 3;
|
||||
board.invalid = true;
|
||||
}
|
||||
if min_col < 2 {
|
||||
min_col = 2;
|
||||
board.invalid = true;
|
||||
}
|
||||
if max_col > WIDTH - 3 {
|
||||
max_col = WIDTH - 3;
|
||||
board.invalid = true;
|
||||
}
|
||||
|
||||
board.min_row = min_row;
|
||||
board.max_row = max_row;
|
||||
board.min_col = min_col;
|
||||
board.max_col = max_col;
|
||||
}
|
||||
|
||||
fn print_board(board: &Board) {
|
||||
println!(); println!(); println!();
|
||||
print!("Generation: {} Population: {}", board.generation, board.population);
|
||||
if board.invalid {
|
||||
print!(" Invalid!");
|
||||
}
|
||||
println!();
|
||||
for row_index in 0..HEIGHT {
|
||||
for col_index in 0..WIDTH {
|
||||
// This print uses the Display implementation for cell_state, above.
|
||||
print!("{}", board.cells[row_index][col_index]);
|
||||
}
|
||||
println!();
|
||||
}
|
||||
}
|
||||
|
||||
fn count_neighbors(board: &Board, row_index: usize, col_index: usize) -> i32 {
|
||||
// Simply loop over all the immediate neighbors of a cell. We assume that the row and
|
||||
// column indices are not on (or outside) the boundary of the arrays; if they are,
|
||||
// the function will panic instead of going out of bounds.
|
||||
let mut count = 0;
|
||||
for i in row_index-1..=row_index+1 {
|
||||
for j in col_index-1..=col_index+1 {
|
||||
if i == row_index && j == col_index {
|
||||
continue;
|
||||
}
|
||||
if board.cells[i][j] == CellState::Alive || board.cells[i][j] == CellState::AboutToDie {
|
||||
count += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
count
|
||||
}
|
||||
|
||||
fn mark_cell_transitions(board: &mut Board) {
|
||||
for row_index in board.min_row-1..=board.max_row+1 {
|
||||
for col_index in board.min_col-1..=board.max_col+1 {
|
||||
let neighbors = count_neighbors(board, row_index, col_index);
|
||||
// Borrow a mutable reference to the array cell
|
||||
let this_cell_state = &mut board.cells[row_index][col_index];
|
||||
*this_cell_state = match *this_cell_state {
|
||||
CellState::Empty if neighbors == 3 => CellState::AboutToBeBorn,
|
||||
CellState::Alive if !(2..=3).contains(&neighbors) => CellState::AboutToDie,
|
||||
_ => *this_cell_state,
|
||||
}
|
||||
}
|
||||
}
|
||||
board.generation += 1;
|
||||
}
|
||||
|
||||
fn delay() {
|
||||
thread::sleep(time::Duration::from_millis(500));
|
||||
}
|
||||
Reference in New Issue
Block a user