move logic out of capa/render/__init__.py

This commit is contained in:
William Ballenthin
2021-06-09 18:06:51 -06:00
parent fc9ad6c737
commit 766dcacdbe
10 changed files with 376 additions and 374 deletions

View File

@@ -28,10 +28,13 @@ import colorama
import capa.rules
import capa.engine
import capa.render
import capa.version
import capa.features
import capa.render.json
import capa.render.default
import capa.render.verbose
import capa.features.freeze
import capa.render.vverbose
import capa.features.extractors
import capa.features.extractors.pefile
from capa.helpers import get_file_taste
@@ -835,13 +838,13 @@ def main(argv=None):
return -1
if args.json:
print(capa.render.render_json(meta, rules, capabilities))
print(capa.render.json.render(meta, rules, capabilities))
elif args.vverbose:
print(capa.render.render_vverbose(meta, rules, capabilities))
print(capa.render.vverbose.render(meta, rules, capabilities))
elif args.verbose:
print(capa.render.render_verbose(meta, rules, capabilities))
print(capa.render.verbose.render(meta, rules, capabilities))
else:
print(capa.render.render_default(meta, rules, capabilities))
print(capa.render.default.render(meta, rules, capabilities))
colorama.deinit()
logger.debug("done.")
@@ -890,7 +893,7 @@ def ida_main():
capa.ida.helpers.inform_user_ida_ui("capa encountered warnings during analysis")
colorama.init(strip=True)
print(capa.render.render_default(meta, rules, capabilities))
print(capa.render.default.render(meta, rules, capabilities))
def is_runtime_ida():

View File

@@ -1,363 +0,0 @@
# Copyright (C) 2020 FireEye, Inc. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at: [package root]/LICENSE.txt
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
import json
import capa.rules
import capa.engine
import capa.render.utils
def convert_statement_to_result_document(statement):
"""
"statement": {
"type": "or"
},
"statement": {
"max": 9223372036854775808,
"min": 2,
"type": "range"
},
"""
statement_type = statement.name.lower()
result = {"type": statement_type}
if statement.description:
result["description"] = statement.description
if statement_type == "some" and statement.count == 0:
result["type"] = "optional"
elif statement_type == "some":
result["count"] = statement.count
elif statement_type == "range":
result["min"] = statement.min
result["max"] = statement.max
result["child"] = convert_feature_to_result_document(statement.child)
elif statement_type == "subscope":
result["subscope"] = statement.scope
return result
def convert_feature_to_result_document(feature):
"""
"feature": {
"number": 6,
"type": "number"
},
"feature": {
"api": "ws2_32.WSASocket",
"type": "api"
},
"feature": {
"match": "create TCP socket",
"type": "match"
},
"feature": {
"characteristic": [
"loop",
true
],
"type": "characteristic"
},
"""
result = {"type": feature.name, feature.name: feature.get_value_str()}
if feature.description:
result["description"] = feature.description
if feature.name == "regex":
result["matches"] = feature.matches
return result
def convert_node_to_result_document(node):
"""
"node": {
"type": "statement",
"statement": { ... }
},
"node": {
"type": "feature",
"feature": { ... }
},
"""
if isinstance(node, capa.engine.Statement):
return {
"type": "statement",
"statement": convert_statement_to_result_document(node),
}
elif isinstance(node, capa.features.Feature):
return {
"type": "feature",
"feature": convert_feature_to_result_document(node),
}
else:
raise RuntimeError("unexpected match node type")
def convert_match_to_result_document(rules, capabilities, result):
"""
convert the given Result instance into a common, Python-native data structure.
this will become part of the "result document" format that can be emitted to JSON.
"""
doc = {
"success": bool(result.success),
"node": convert_node_to_result_document(result.statement),
"children": [convert_match_to_result_document(rules, capabilities, child) for child in result.children],
}
# logic expression, like `and`, don't have locations - their children do.
# so only add `locations` to feature nodes.
if isinstance(result.statement, capa.features.Feature):
if bool(result.success):
doc["locations"] = result.locations
elif isinstance(result.statement, capa.rules.Range):
if bool(result.success):
doc["locations"] = result.locations
# if we have a `match` statement, then we're referencing another rule or namespace.
# this could an external rule (written by a human), or
# rule generated to support a subscope (basic block, etc.)
# we still want to include the matching logic in this tree.
#
# so, we need to lookup the other rule results
# and then filter those down to the address used here.
# finally, splice that logic into this tree.
if (
doc["node"]["type"] == "feature"
and doc["node"]["feature"]["type"] == "match"
# only add subtree on success,
# because there won't be results for the other rule on failure.
and doc["success"]
):
name = doc["node"]["feature"]["match"]
if name in rules:
# this is a rule that we're matching
#
# pull matches from the referenced rule into our tree here.
rule_name = doc["node"]["feature"]["match"]
rule = rules[rule_name]
rule_matches = {address: result for (address, result) in capabilities[rule_name]}
if rule.meta.get("capa/subscope-rule"):
# for a subscope rule, fixup the node to be a scope node, rather than a match feature node.
#
# e.g. `contain loop/30c4c78e29bf4d54894fc74f664c62e8` -> `basic block`
scope = rule.meta["scope"]
doc["node"] = {
"type": "statement",
"statement": {
"type": "subscope",
"subscope": scope,
},
}
for location in doc["locations"]:
doc["children"].append(convert_match_to_result_document(rules, capabilities, rule_matches[location]))
else:
# this is a namespace that we're matching
#
# check for all rules in the namespace,
# seeing if they matched.
# if so, pull their matches into our match tree here.
ns_name = doc["node"]["feature"]["match"]
ns_rules = rules.rules_by_namespace[ns_name]
for rule in ns_rules:
if rule.name in capabilities:
# the rule matched, so splice results into our tree here.
#
# note, there's a shortcoming in our result document schema here:
# we lose the name of the rule that matched in a namespace.
# for example, if we have a statement: `match: runtime/dotnet`
# and we get matches, we can say the following:
#
# match: runtime/dotnet @ 0x0
# or:
# import: mscoree._CorExeMain @ 0x402000
#
# however, we lose the fact that it was rule
# "compiled to the .NET platform"
# that contained this logic and did the match.
#
# we could introduce an intermediate node here.
# this would be a breaking change and require updates to the renderers.
# in the meantime, the above might be sufficient.
rule_matches = {address: result for (address, result) in capabilities[rule.name]}
for location in doc["locations"]:
doc["children"].append(
convert_match_to_result_document(rules, capabilities, rule_matches[location])
)
return doc
def convert_meta_to_result_document(meta):
attacks = meta.get("att&ck", [])
meta["att&ck"] = [parse_canonical_attack(attack) for attack in attacks]
mbcs = meta.get("mbc", [])
meta["mbc"] = [parse_canonical_mbc(mbc) for mbc in mbcs]
return meta
def parse_canonical_attack(attack):
"""
parse capa's canonical ATT&CK representation: `Tactic::Technique::Subtechnique [Identifier]`
"""
tactic = ""
technique = ""
subtechnique = ""
parts, id = capa.render.utils.parse_parts_id(attack)
if len(parts) > 0:
tactic = parts[0]
if len(parts) > 1:
technique = parts[1]
if len(parts) > 2:
subtechnique = parts[2]
return {
"parts": parts,
"id": id,
"tactic": tactic,
"technique": technique,
"subtechnique": subtechnique,
}
def parse_canonical_mbc(mbc):
"""
parse capa's canonical MBC representation: `Objective::Behavior::Method [Identifier]`
"""
objective = ""
behavior = ""
method = ""
parts, id = capa.render.utils.parse_parts_id(mbc)
if len(parts) > 0:
objective = parts[0]
if len(parts) > 1:
behavior = parts[1]
if len(parts) > 2:
method = parts[2]
return {
"parts": parts,
"id": id,
"objective": objective,
"behavior": behavior,
"method": method,
}
def convert_capabilities_to_result_document(meta, rules, capabilities):
"""
convert the given rule set and capabilities result to a common, Python-native data structure.
this format can be directly emitted to JSON, or passed to the other `render_*` routines
to render as text.
see examples of substructures in above routines.
schema:
```json
{
"meta": {...},
"rules: {
$rule-name: {
"meta": {...copied from rule.meta...},
"matches: {
$address: {...match details...},
...
}
},
...
}
}
```
Args:
meta (Dict[str, Any]):
rules (RuleSet):
capabilities (Dict[str, List[Tuple[int, Result]]]):
"""
doc = {
"meta": meta,
"rules": {},
}
for rule_name, matches in capabilities.items():
rule = rules[rule_name]
if rule.meta.get("capa/subscope-rule"):
continue
rule_meta = convert_meta_to_result_document(rule.meta)
doc["rules"][rule_name] = {
"meta": rule_meta,
"source": rule.definition,
"matches": {
addr: convert_match_to_result_document(rules, capabilities, match) for (addr, match) in matches
},
}
return doc
def render_vverbose(meta, rules, capabilities):
# there's an import loop here
# if capa.render imports capa.render.vverbose
# and capa.render.vverbose import capa.render (implicitly, as a submodule)
# so, defer the import until routine is called, breaking the import loop.
import capa.render.vverbose
doc = convert_capabilities_to_result_document(meta, rules, capabilities)
return capa.render.vverbose.render_vverbose(doc)
def render_verbose(meta, rules, capabilities):
# break import loop
import capa.render.verbose
doc = convert_capabilities_to_result_document(meta, rules, capabilities)
return capa.render.verbose.render_verbose(doc)
def render_default(meta, rules, capabilities):
# break import loop
import capa.render.default
import capa.render.verbose
doc = convert_capabilities_to_result_document(meta, rules, capabilities)
return capa.render.default.render_default(doc)
class CapaJsonObjectEncoder(json.JSONEncoder):
"""JSON encoder that emits Python sets as sorted lists"""
def default(self, obj):
if isinstance(obj, (list, dict, int, float, bool, type(None))) or isinstance(obj, str):
return json.JSONEncoder.default(self, obj)
elif isinstance(obj, set):
return list(sorted(obj))
else:
# probably will TypeError
return json.JSONEncoder.default(self, obj)
def render_json(meta, rules, capabilities):
return json.dumps(
convert_capabilities_to_result_document(meta, rules, capabilities),
cls=CapaJsonObjectEncoder,
sort_keys=True,
)

View File

@@ -11,6 +11,7 @@ import collections
import tabulate
import capa.render.utils as rutils
import capa.render.result_document
tabulate.PRESERVE_WHITESPACE = True
@@ -219,3 +220,8 @@ def render_default(doc):
render_capabilities(doc, ostream)
return ostream.getvalue()
def render(meta, rules, capabilities):
doc = capa.render.result_document.convert_capabilities_to_result_document(meta, rules, capabilities)
return render_default(doc)

31
capa/render/json.py Normal file
View File

@@ -0,0 +1,31 @@
# Copyright (C) 2020 FireEye, Inc. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at: [package root]/LICENSE.txt
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
import json
import capa.render.result_document
class CapaJsonObjectEncoder(json.JSONEncoder):
"""JSON encoder that emits Python sets as sorted lists"""
def default(self, obj):
if isinstance(obj, (list, dict, int, float, bool, type(None))) or isinstance(obj, str):
return json.JSONEncoder.default(self, obj)
elif isinstance(obj, set):
return list(sorted(obj))
else:
# probably will TypeError
return json.JSONEncoder.default(self, obj)
def render(meta, rules, capabilities):
return json.dumps(
capa.render.result_document.convert_capabilities_to_result_document(meta, rules, capabilities),
cls=CapaJsonObjectEncoder,
sort_keys=True,
)

View File

@@ -0,0 +1,311 @@
# Copyright (C) 2020 FireEye, Inc. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at: [package root]/LICENSE.txt
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
import capa.rules
import capa.engine
import capa.render.utils
def convert_statement_to_result_document(statement):
"""
"statement": {
"type": "or"
},
"statement": {
"max": 9223372036854775808,
"min": 2,
"type": "range"
},
"""
statement_type = statement.name.lower()
result = {"type": statement_type}
if statement.description:
result["description"] = statement.description
if statement_type == "some" and statement.count == 0:
result["type"] = "optional"
elif statement_type == "some":
result["count"] = statement.count
elif statement_type == "range":
result["min"] = statement.min
result["max"] = statement.max
result["child"] = convert_feature_to_result_document(statement.child)
elif statement_type == "subscope":
result["subscope"] = statement.scope
return result
def convert_feature_to_result_document(feature):
"""
"feature": {
"number": 6,
"type": "number"
},
"feature": {
"api": "ws2_32.WSASocket",
"type": "api"
},
"feature": {
"match": "create TCP socket",
"type": "match"
},
"feature": {
"characteristic": [
"loop",
true
],
"type": "characteristic"
},
"""
result = {"type": feature.name, feature.name: feature.get_value_str()}
if feature.description:
result["description"] = feature.description
if feature.name == "regex":
result["matches"] = feature.matches
return result
def convert_node_to_result_document(node):
"""
"node": {
"type": "statement",
"statement": { ... }
},
"node": {
"type": "feature",
"feature": { ... }
},
"""
if isinstance(node, capa.engine.Statement):
return {
"type": "statement",
"statement": convert_statement_to_result_document(node),
}
elif isinstance(node, capa.features.Feature):
return {
"type": "feature",
"feature": convert_feature_to_result_document(node),
}
else:
raise RuntimeError("unexpected match node type")
def convert_match_to_result_document(rules, capabilities, result):
"""
convert the given Result instance into a common, Python-native data structure.
this will become part of the "result document" format that can be emitted to JSON.
"""
doc = {
"success": bool(result.success),
"node": convert_node_to_result_document(result.statement),
"children": [convert_match_to_result_document(rules, capabilities, child) for child in result.children],
}
# logic expression, like `and`, don't have locations - their children do.
# so only add `locations` to feature nodes.
if isinstance(result.statement, capa.features.Feature):
if bool(result.success):
doc["locations"] = result.locations
elif isinstance(result.statement, capa.rules.Range):
if bool(result.success):
doc["locations"] = result.locations
# if we have a `match` statement, then we're referencing another rule or namespace.
# this could an external rule (written by a human), or
# rule generated to support a subscope (basic block, etc.)
# we still want to include the matching logic in this tree.
#
# so, we need to lookup the other rule results
# and then filter those down to the address used here.
# finally, splice that logic into this tree.
if (
doc["node"]["type"] == "feature"
and doc["node"]["feature"]["type"] == "match"
# only add subtree on success,
# because there won't be results for the other rule on failure.
and doc["success"]
):
name = doc["node"]["feature"]["match"]
if name in rules:
# this is a rule that we're matching
#
# pull matches from the referenced rule into our tree here.
rule_name = doc["node"]["feature"]["match"]
rule = rules[rule_name]
rule_matches = {address: result for (address, result) in capabilities[rule_name]}
if rule.meta.get("capa/subscope-rule"):
# for a subscope rule, fixup the node to be a scope node, rather than a match feature node.
#
# e.g. `contain loop/30c4c78e29bf4d54894fc74f664c62e8` -> `basic block`
scope = rule.meta["scope"]
doc["node"] = {
"type": "statement",
"statement": {
"type": "subscope",
"subscope": scope,
},
}
for location in doc["locations"]:
doc["children"].append(convert_match_to_result_document(rules, capabilities, rule_matches[location]))
else:
# this is a namespace that we're matching
#
# check for all rules in the namespace,
# seeing if they matched.
# if so, pull their matches into our match tree here.
ns_name = doc["node"]["feature"]["match"]
ns_rules = rules.rules_by_namespace[ns_name]
for rule in ns_rules:
if rule.name in capabilities:
# the rule matched, so splice results into our tree here.
#
# note, there's a shortcoming in our result document schema here:
# we lose the name of the rule that matched in a namespace.
# for example, if we have a statement: `match: runtime/dotnet`
# and we get matches, we can say the following:
#
# match: runtime/dotnet @ 0x0
# or:
# import: mscoree._CorExeMain @ 0x402000
#
# however, we lose the fact that it was rule
# "compiled to the .NET platform"
# that contained this logic and did the match.
#
# we could introduce an intermediate node here.
# this would be a breaking change and require updates to the renderers.
# in the meantime, the above might be sufficient.
rule_matches = {address: result for (address, result) in capabilities[rule.name]}
for location in doc["locations"]:
doc["children"].append(
convert_match_to_result_document(rules, capabilities, rule_matches[location])
)
return doc
def convert_meta_to_result_document(meta):
attacks = meta.get("att&ck", [])
meta["att&ck"] = [parse_canonical_attack(attack) for attack in attacks]
mbcs = meta.get("mbc", [])
meta["mbc"] = [parse_canonical_mbc(mbc) for mbc in mbcs]
return meta
def parse_canonical_attack(attack):
"""
parse capa's canonical ATT&CK representation: `Tactic::Technique::Subtechnique [Identifier]`
"""
tactic = ""
technique = ""
subtechnique = ""
parts, id = capa.render.utils.parse_parts_id(attack)
if len(parts) > 0:
tactic = parts[0]
if len(parts) > 1:
technique = parts[1]
if len(parts) > 2:
subtechnique = parts[2]
return {
"parts": parts,
"id": id,
"tactic": tactic,
"technique": technique,
"subtechnique": subtechnique,
}
def parse_canonical_mbc(mbc):
"""
parse capa's canonical MBC representation: `Objective::Behavior::Method [Identifier]`
"""
objective = ""
behavior = ""
method = ""
parts, id = capa.render.utils.parse_parts_id(mbc)
if len(parts) > 0:
objective = parts[0]
if len(parts) > 1:
behavior = parts[1]
if len(parts) > 2:
method = parts[2]
return {
"parts": parts,
"id": id,
"objective": objective,
"behavior": behavior,
"method": method,
}
def convert_capabilities_to_result_document(meta, rules, capabilities):
"""
convert the given rule set and capabilities result to a common, Python-native data structure.
this format can be directly emitted to JSON, or passed to the other `capa.render.*.render()` routines
to render as text.
see examples of substructures in above routines.
schema:
```json
{
"meta": {...},
"rules: {
$rule-name: {
"meta": {...copied from rule.meta...},
"matches: {
$address: {...match details...},
...
}
},
...
}
}
```
Args:
meta (Dict[str, Any]):
rules (RuleSet):
capabilities (Dict[str, List[Tuple[int, Result]]]):
"""
doc = {
"meta": meta,
"rules": {},
}
for rule_name, matches in capabilities.items():
rule = rules[rule_name]
if rule.meta.get("capa/subscope-rule"):
continue
rule_meta = convert_meta_to_result_document(rule.meta)
doc["rules"][rule_name] = {
"meta": rule_meta,
"source": rule.definition,
"matches": {
addr: convert_match_to_result_document(rules, capabilities, match) for (addr, match) in matches
},
}
return doc

View File

@@ -26,6 +26,7 @@ import tabulate
import capa.rules
import capa.render.utils as rutils
import capa.render.result_document
def render_meta(ostream, doc):
@@ -120,3 +121,8 @@ def render_verbose(doc):
ostream.write("\n")
return ostream.getvalue()
def render(meta, rules, capabilities):
doc = capa.render.result_document.convert_capabilities_to_result_document(meta, rules, capabilities)
return render_verbose(doc)

View File

@@ -12,6 +12,7 @@ import capa.rules
import capa.features
import capa.render.utils as rutils
import capa.render.verbose
import capa.render.result_document
def render_locations(ostream, match):
@@ -261,3 +262,8 @@ def render_vverbose(doc):
ostream.write("\n")
return ostream.getvalue()
def render(meta, rules, capabilities):
doc = capa.render.result_document.convert_capabilities_to_result_document(meta, rules, capabilities)
return render_vverbose(doc)

View File

@@ -66,7 +66,7 @@ import multiprocessing.pool
import capa
import capa.main
import capa.rules
import capa.render
import capa.render.json
logger = logging.getLogger("capa")
@@ -205,7 +205,7 @@ def main(argv=None):
capabilities = result["ok"]["capabilities"]
# our renderer expects to emit a json document for a single sample
# so we deserialize the json document, store it in a larger dict, and we'll subsequently re-encode.
results[result["path"]] = json.loads(capa.render.render_json(meta, rules, capabilities))
results[result["path"]] = json.loads(capa.render.json.render(meta, rules, capabilities))
else:
raise ValueError("unexpected status: %s" % (result["status"]))

View File

@@ -6,9 +6,10 @@ import collections
import capa.main
import capa.rules
import capa.engine
import capa.render
import capa.features
import capa.render.json
import capa.render.utils as rutils
import capa.render.default
from capa.engine import *
from capa.render import convert_capabilities_to_result_document
@@ -207,9 +208,9 @@ def capa_details(file_path, output_format="dictionary"):
elif output_format == "json":
# render results
# ...as json
capa_output = json.loads(capa.render.render_json(meta, rules, capabilities))
capa_output = json.loads(capa.render.json.render(meta, rules, capabilities))
elif output_format == "texttable":
# ...as human readable text table
capa_output = capa.render.render_default(meta, rules, capabilities)
capa_output = capa.render.default.render(meta, rules, capabilities)
return capa_output

View File

@@ -154,6 +154,7 @@ def main(argv=None):
def ida_main():
import idc
import capa.features.extractors.ida.extractor
function = idc.get_func_attr(idc.here(), idc.FUNCATTR_START)