First step of refactor done.

This commit is contained in:
Joe Ardent
2018-03-20 22:40:53 -07:00
parent 7fa2ce3434
commit 8fa83e3836
4 changed files with 304 additions and 296 deletions

View File

@@ -4,5 +4,5 @@ version = "0.1.1"
authors = ["bootandy <bootandy@gmail.com>", "nebkor <code@ardent.nebcorp.com>"]
[dependencies]
ansi_term = "*"
ansi_term = "0.11"
clap = "2.31"

View File

@@ -1,14 +1,17 @@
use std::collections::HashSet;
use std::cmp::{self, Ordering};
use std::fs::{self, Metadata, ReadDir};
use std::io;
use std::cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd};
#[derive(Clone, Debug)]
struct Node {
dir: DirEnt,
children: Vec<Node>,
pub struct Node {
pub dir: DirEnt,
pub children: Vec<Node>,
}
#[derive(Clone, Debug)]
pub struct DirEnt {
pub name: String,
pub size: u64,
}
impl Ord for Node {
fn cmp(&self, other: &Self) -> Ordering {
if self.dir.size > other.dir.size {
@@ -46,287 +49,3 @@ impl PartialEq for Node {
}
}
impl Eq for Node {}
#[derive(Clone, Debug)]
struct DirEnt {
name: String,
size: u64,
}
pub fn get_dir_tree(filenames: &Vec<&str>) -> (bool, Vec<Node>) {
let mut permissions = true;
let mut results = vec![];
for b in filenames {
let mut new_name = String::from(*b);
while new_name.chars().last() == Some('/') && new_name.len() != 1 {
new_name.pop();
}
let (hp, data) = examine_dir_str(new_name);
permissions = permissions && hp;
results.push(data);
}
(permissions, results)
}
fn examine_dir_str(loc: String) -> (bool, Node) {
let mut inodes: HashSet<u64> = HashSet::new();
let (hp, result) = examine_dir(fs::read_dir(&loc), &mut inodes);
// This needs to be folded into the below recursive call somehow
let new_size = result.iter().fold(0, |a, b| a + b.dir.size);
(
hp,
Node {
dir: DirEnt {
name: loc,
size: new_size,
},
children: result,
},
)
}
#[cfg(target_os = "linux")]
fn get_metadata_blocks_and_inode(d: &std::fs::DirEntry) -> Option<(u64, u64)> {
use std::os::linux::fs::MetadataExt;
match d.metadata().ok() {
Some(md) => Some((md.len(), md.st_ino())),
None => None,
}
}
#[cfg(target_os = "unix")]
fn get_metadata_blocks_and_inode(d: &std::fs::DirEntry) -> Option<(u64, u64)> {
use std::os::unix::fs::MetadataExt;
match d.metadata().ok() {
Some(md) => Some((md.len(), md.ino())),
None => None,
}
}
#[cfg(target_os = "macos")]
fn get_metadata_blocks_and_inode(d: &std::fs::DirEntry) -> Option<(u64, u64)> {
use std::os::macos::fs::MetadataExt;
match d.metadata().ok() {
Some(md) => Some((md.len(), md.st_ino())),
None => None,
}
}
#[cfg(not(any(target_os = "linux", target_os = "unix", target_os = "macos")))]
fn get_metadata_blocks_and_inode(_d: &std::fs::DirEntry) -> Option<(u64, u64)> {
match _d.metadata().ok() {
Some(md) => Some((md.len(), 0)), //move to option not 0
None => None,
}
}
fn examine_dir(a_dir: io::Result<ReadDir>, inodes: &mut HashSet<u64>) -> (bool, Vec<Node>) {
let mut result = vec![];
let mut have_permission = true;
if a_dir.is_ok() {
let paths = a_dir.unwrap();
for dd in paths {
match dd {
Ok(d) => {
let file_type = d.file_type().ok();
let maybe_size_and_inode = get_metadata_blocks_and_inode(&d);
match (file_type, maybe_size_and_inode) {
(Some(file_type), Some((size, inode))) => {
let s = d.path().to_string_lossy().to_string();
if inodes.contains(&inode) {
continue;
}
inodes.insert(inode);
if d.path().is_dir() && !file_type.is_symlink() {
let (hp, recursive) = examine_dir(fs::read_dir(d.path()), inodes);
have_permission = have_permission && hp;
let new_size = recursive.iter().fold(size, |a, b| a + b.dir.size);
result.push(Node {
dir: DirEnt {
name: s,
size: new_size,
},
children: recursive,
})
} else {
result.push(Node {
dir: DirEnt {
name: s,
size: size,
},
children: vec![],
})
}
}
(_, None) => have_permission = false,
(_, _) => (),
}
}
Err(_) => (),
}
}
} else {
have_permission = false;
}
(have_permission, result)
}
// We start with a list of root directories - these must be the biggest folders
// We then repeadedly merge in the children of the biggest directory - Each iteration
// the next biggest directory's children are merged in.
pub fn find_big_ones<'a>(l: &'a Vec<Node>, max_to_show: usize) -> Vec<&Node> {
let mut new_l: Vec<&Node> = l.iter().map(|a| a).collect();
new_l.sort();
for processed_pointer in 0..max_to_show {
if new_l.len() == processed_pointer {
break;
}
// Must be a list of pointers into new_l otherwise b_list will go out of scope
// when it is deallocated
let mut b_list: Vec<&Node> = new_l[processed_pointer]
.children
.iter()
.map(|a| a)
.collect();
new_l.extend(b_list);
new_l.sort();
}
if new_l.len() > max_to_show {
new_l[0..max_to_show + 1].to_vec()
} else {
new_l
}
}
pub fn display(permissions: bool, to_display: &Vec<&Node>) -> () {
if !permissions {
eprintln!("Did not have permissions for all directories");
}
display_node(to_display[0], &to_display, true, 1, "")
}
fn display_node<S: Into<String>>(
node_to_print: &Node,
to_display: &Vec<&Node>,
is_first: bool,
depth: u8,
indentation_str: S,
) {
let mut is = indentation_str.into();
print_this_node(node_to_print, is_first, depth, is.as_ref());
is = is.replace("└─┬", " ");
is = is.replace("└──", " ");
is = is.replace("├──", "");
is = is.replace("├─┬", "");
let printable_node_slashes = node_to_print.dir.name.matches('/').count();
let mut num_siblings = to_display.iter().fold(0, |a, b| {
if node_to_print.children.contains(b)
&& b.dir.name.matches('/').count() == printable_node_slashes + 1
{
a + 1
} else {
a
}
});
let mut is_biggest = true;
let mut has_display_children = false;
for node in to_display {
if node_to_print.children.contains(node) {
let has_children = node.children.len() > 0;
if node.dir.name.matches("/").count() == printable_node_slashes + 1 {
num_siblings -= 1;
for ref n in node.children.iter() {
has_display_children = has_display_children || to_display.contains(n);
}
let has_children = has_children && has_display_children;
let tree_chars = {
if num_siblings == 0 {
if has_children {
"└─┬"
} else {
"└──"
}
} else {
if has_children {
"├─┬"
} else {
"├──"
}
}
};
display_node(
&node,
to_display,
is_biggest,
depth + 1,
is.to_string() + tree_chars,
);
is_biggest = false;
}
}
}
}
fn print_this_node(node_to_print: &Node, is_biggest: bool, depth: u8, indentation_str: &str) {
let padded_size = format!("{:>5}", human_readable_number(node_to_print.dir.size),);
println!(
"{} {} {}",
if is_biggest {
Fixed(196).paint(padded_size)
} else {
Fixed(7).paint(padded_size)
},
indentation_str,
Fixed(7)
.on(Fixed(cmp::min(8, (depth) as u8) + 231))
.paint(node_to_print.dir.name.to_string())
);
}
fn human_readable_number(size: u64) -> (String) {
let units = vec!["T", "G", "M", "K"]; //make static
//return format!("{}B", size);
for (i, u) in units.iter().enumerate() {
let marker = 1024u64.pow((units.len() - i) as u32);
if size >= marker {
if size / marker < 10 {
return format!("{:.1}{}", (size as f32 / marker as f32), u);
} else {
return format!("{}{}", (size / marker), u);
}
}
}
return format!("{}B", size);
}
mod tests {
#[allow(unused_imports)]
use super::*;
#[test]
fn test_human_readable_number() {
assert_eq!(human_readable_number(1), "1B");
assert_eq!(human_readable_number(956), "956B");
assert_eq!(human_readable_number(1004), "1004B");
assert_eq!(human_readable_number(1024), "1.0K");
assert_eq!(human_readable_number(1536), "1.5K");
assert_eq!(human_readable_number(1024 * 512), "512K");
assert_eq!(human_readable_number(1024 * 1024), "1.0M");
assert_eq!(human_readable_number(1024 * 1024 * 1024 - 1), "1023M");
assert_eq!(human_readable_number(1024 * 1024 * 1024 * 20), "20G");
assert_eq!(human_readable_number(1024 * 1024 * 1024 * 1024), "1.0T");
}
}

View File

@@ -1,8 +1,8 @@
extern crate dust;
use dust::*;
extern crate ansi_term;
use ansi_term::Colour::Fixed;
mod utils;
use utils::{display, find_big_ones, get_dir_tree};
#[macro_use]
extern crate clap;
use clap::{App, AppSettings, Arg};

289
src/utils.rs Normal file
View File

@@ -0,0 +1,289 @@
use std::collections::HashSet;
use std;
use std::fs::{self, ReadDir};
use std::io;
use std::cmp;
use dust::{DirEnt, Node};
extern crate ansi_term;
use self::ansi_term::Colour::Fixed;
pub fn get_dir_tree(filenames: &Vec<&str>) -> (bool, Vec<Node>) {
let mut permissions = true;
let mut results = vec![];
for b in filenames {
let mut new_name = String::from(*b);
while new_name.chars().last() == Some('/') && new_name.len() != 1 {
new_name.pop();
}
let (hp, data) = examine_dir_str(new_name);
permissions = permissions && hp;
results.push(data);
}
(permissions, results)
}
fn examine_dir_str(loc: String) -> (bool, Node) {
let mut inodes: HashSet<u64> = HashSet::new();
let (hp, result) = examine_dir(fs::read_dir(&loc), &mut inodes);
// This needs to be folded into the below recursive call somehow
let new_size = result.iter().fold(0, |a, b| a + b.dir.size);
(
hp,
Node {
dir: DirEnt {
name: loc,
size: new_size,
},
children: result,
},
)
}
#[cfg(target_os = "linux")]
fn get_metadata_blocks_and_inode(d: &std::fs::DirEntry) -> Option<(u64, u64)> {
use std::os::linux::fs::MetadataExt;
match d.metadata().ok() {
Some(md) => Some((md.len(), md.st_ino())),
None => None,
}
}
#[cfg(target_os = "unix")]
fn get_metadata_blocks_and_inode(d: &std::fs::DirEntry) -> Option<(u64, u64)> {
use std::os::unix::fs::MetadataExt;
match d.metadata().ok() {
Some(md) => Some((md.len(), md.ino())),
None => None,
}
}
#[cfg(target_os = "macos")]
fn get_metadata_blocks_and_inode(d: &std::fs::DirEntry) -> Option<(u64, u64)> {
use std::os::macos::fs::MetadataExt;
match d.metadata().ok() {
Some(md) => Some((md.len(), md.st_ino())),
None => None,
}
}
#[cfg(not(any(target_os = "linux", target_os = "unix", target_os = "macos")))]
fn get_metadata_blocks_and_inode(_d: &std::fs::DirEntry) -> Option<(u64, u64)> {
match _d.metadata().ok() {
Some(md) => Some((md.len(), 0)), //move to option not 0
None => None,
}
}
fn examine_dir(a_dir: io::Result<ReadDir>, inodes: &mut HashSet<u64>) -> (bool, Vec<Node>) {
let mut result = vec![];
let mut have_permission = true;
if a_dir.is_ok() {
let paths = a_dir.unwrap();
for dd in paths {
match dd {
Ok(d) => {
let file_type = d.file_type().ok();
let maybe_size_and_inode = get_metadata_blocks_and_inode(&d);
match (file_type, maybe_size_and_inode) {
(Some(file_type), Some((size, inode))) => {
let s = d.path().to_string_lossy().to_string();
if inodes.contains(&inode) {
continue;
}
inodes.insert(inode);
if d.path().is_dir() && !file_type.is_symlink() {
let (hp, recursive) = examine_dir(fs::read_dir(d.path()), inodes);
have_permission = have_permission && hp;
let new_size = recursive.iter().fold(size, |a, b| a + b.dir.size);
result.push(Node {
dir: DirEnt {
name: s,
size: new_size,
},
children: recursive,
})
} else {
result.push(Node {
dir: DirEnt {
name: s,
size: size,
},
children: vec![],
})
}
}
(_, None) => have_permission = false,
(_, _) => (),
}
}
Err(_) => (),
}
}
} else {
have_permission = false;
}
(have_permission, result)
}
// We start with a list of root directories - these must be the biggest folders
// We then repeadedly merge in the children of the biggest directory - Each iteration
// the next biggest directory's children are merged in.
pub fn find_big_ones<'a>(l: &'a Vec<Node>, max_to_show: usize) -> Vec<&Node> {
let mut new_l: Vec<&Node> = l.iter().map(|a| a).collect();
new_l.sort();
for processed_pointer in 0..max_to_show {
if new_l.len() == processed_pointer {
break;
}
// Must be a list of pointers into new_l otherwise b_list will go out of scope
// when it is deallocated
let mut b_list: Vec<&Node> = new_l[processed_pointer]
.children
.iter()
.map(|a| a)
.collect();
new_l.extend(b_list);
new_l.sort();
}
if new_l.len() > max_to_show {
new_l[0..max_to_show + 1].to_vec()
} else {
new_l
}
}
pub fn display(permissions: bool, to_display: &Vec<&Node>) -> () {
if !permissions {
eprintln!("Did not have permissions for all directories");
}
display_node(to_display[0], &to_display, true, 1, "")
}
fn display_node<S: Into<String>>(
node_to_print: &Node,
to_display: &Vec<&Node>,
is_first: bool,
depth: u8,
indentation_str: S,
) {
let mut is = indentation_str.into();
print_this_node(node_to_print, is_first, depth, is.as_ref());
is = is.replace("└─┬", " ");
is = is.replace("└──", " ");
is = is.replace("├──", "");
is = is.replace("├─┬", "");
let printable_node_slashes = node_to_print.dir.name.matches('/').count();
let mut num_siblings = to_display.iter().fold(0, |a, b| {
if node_to_print.children.contains(b)
&& b.dir.name.matches('/').count() == printable_node_slashes + 1
{
a + 1
} else {
a
}
});
let mut is_biggest = true;
let mut has_display_children = false;
for node in to_display {
if node_to_print.children.contains(node) {
let has_children = node.children.len() > 0;
if node.dir.name.matches("/").count() == printable_node_slashes + 1 {
num_siblings -= 1;
for ref n in node.children.iter() {
has_display_children = has_display_children || to_display.contains(n);
}
let has_children = has_children && has_display_children;
let tree_chars = {
if num_siblings == 0 {
if has_children {
"└─┬"
} else {
"└──"
}
} else {
if has_children {
"├─┬"
} else {
"├──"
}
}
};
display_node(
&node,
to_display,
is_biggest,
depth + 1,
is.to_string() + tree_chars,
);
is_biggest = false;
}
}
}
}
fn print_this_node(node_to_print: &Node, is_biggest: bool, depth: u8, indentation_str: &str) {
let padded_size = format!("{:>5}", human_readable_number(node_to_print.dir.size),);
println!(
"{} {} {}",
if is_biggest {
Fixed(196).paint(padded_size)
} else {
Fixed(7).paint(padded_size)
},
indentation_str,
Fixed(7)
.on(Fixed(cmp::min(8, (depth) as u8) + 231))
.paint(node_to_print.dir.name.to_string())
);
}
fn human_readable_number(size: u64) -> (String) {
let units = vec!["T", "G", "M", "K"]; //make static
//return format!("{}B", size);
for (i, u) in units.iter().enumerate() {
let marker = 1024u64.pow((units.len() - i) as u32);
if size >= marker {
if size / marker < 10 {
return format!("{:.1}{}", (size as f32 / marker as f32), u);
} else {
return format!("{}{}", (size / marker), u);
}
}
}
return format!("{}B", size);
}
mod tests {
#[allow(unused_imports)]
use super::*;
#[test]
fn test_human_readable_number() {
assert_eq!(human_readable_number(1), "1B");
assert_eq!(human_readable_number(956), "956B");
assert_eq!(human_readable_number(1004), "1004B");
assert_eq!(human_readable_number(1024), "1.0K");
assert_eq!(human_readable_number(1536), "1.5K");
assert_eq!(human_readable_number(1024 * 512), "512K");
assert_eq!(human_readable_number(1024 * 1024), "1.0M");
assert_eq!(human_readable_number(1024 * 1024 * 1024 - 1), "1023M");
assert_eq!(human_readable_number(1024 * 1024 * 1024 * 20), "20G");
assert_eq!(human_readable_number(1024 * 1024 * 1024 * 1024), "1.0T");
}
}