mirror of
https://github.com/rosenpass/rosenpass.git
synced 2025-12-12 07:40:30 -08:00
implement test to statistically check constant run time of memcmp (feature: constant_time_tests)
This commit is contained in:
committed by
Karolin Varner
parent
8c469af6b1
commit
36c99c020e
1
Cargo.lock
generated
1
Cargo.lock
generated
@@ -1168,6 +1168,7 @@ name = "rosenpass-constant-time"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"memsec",
|
||||
"rand",
|
||||
"rosenpass-to",
|
||||
]
|
||||
|
||||
|
||||
@@ -11,6 +11,12 @@ readme = "readme.md"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[features]
|
||||
constant_time_tests = []
|
||||
|
||||
[dependencies]
|
||||
rosenpass-to = { workspace = true }
|
||||
memsec = { workspace = true }
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8.5"
|
||||
|
||||
@@ -77,3 +77,92 @@ pub fn increment(v: &mut [u8]) {
|
||||
*black_box(&mut carry) = black_box(black_box(c) as u8);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "constant_time_tests"))]
|
||||
mod constant_time_tests {
|
||||
use super::*;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
use std::time::Instant;
|
||||
|
||||
#[test]
|
||||
/// tests whether [memcmp] actually runs in constant time
|
||||
///
|
||||
/// This test function will run an equal amount of comparisons on two different sets of parameters:
|
||||
/// - completely equal slices
|
||||
/// - completely unequal slices.
|
||||
/// All comparisons are executed in a randomized order. The test will fail if one of the
|
||||
/// two sets is checked for equality significantly faster than the other set
|
||||
/// (absolute correlation coefficient ≥ 0.01)
|
||||
fn memcmp_runs_in_constant_time() {
|
||||
// prepare data to compare
|
||||
let n: usize = 1E6 as usize; // number of comparisons to run
|
||||
let len = 1024; // length of each slice passed as parameters to the tested comparison function
|
||||
let a1 = "a".repeat(len);
|
||||
let a2 = a1.clone();
|
||||
let b = "b".repeat(len);
|
||||
|
||||
let a1 = a1.as_bytes();
|
||||
let a2 = a2.as_bytes();
|
||||
let b = b.as_bytes();
|
||||
|
||||
// vector representing all timing tests
|
||||
//
|
||||
// Each element is a tuple of:
|
||||
// 0: whether the test compared two equal slices
|
||||
// 1: the duration needed for the comparison to run
|
||||
let mut tests = (0..n)
|
||||
.map(|i| (i < n / 2, std::time::Duration::ZERO))
|
||||
.collect::<Vec<_>>();
|
||||
tests.shuffle(&mut thread_rng());
|
||||
|
||||
// run comparisons / call function to test
|
||||
for test in tests.iter_mut() {
|
||||
let now = Instant::now();
|
||||
if test.0 {
|
||||
memcmp(a1, a2);
|
||||
} else {
|
||||
memcmp(a1, b);
|
||||
}
|
||||
test.1 = now.elapsed();
|
||||
// println!("eq: {}, elapsed: {:.2?}", test.0, test.1);
|
||||
}
|
||||
|
||||
// sort by execution time and calculate Pearson correlation coefficient
|
||||
tests.sort_by_key(|v| v.1);
|
||||
let tests = tests
|
||||
.iter()
|
||||
.map(|t| (if t.0 { 1_f64 } else { 0_f64 }, t.1.as_nanos() as f64))
|
||||
.collect::<Vec<_>>();
|
||||
// averages
|
||||
let (avg_x, avg_y): (f64, f64) = (
|
||||
tests.iter().map(|t| t.0).sum::<f64>() / n as f64,
|
||||
tests.iter().map(|t| t.1).sum::<f64>() / n as f64,
|
||||
);
|
||||
assert!((avg_x - 0.5).abs() < 1E-12);
|
||||
// standard deviations
|
||||
let sd_x = 0.5;
|
||||
let sd_y = (1_f64 / n as f64
|
||||
* tests
|
||||
.iter()
|
||||
.map(|t| {
|
||||
let difference = t.1 - avg_y;
|
||||
difference * difference
|
||||
})
|
||||
.sum::<f64>())
|
||||
.sqrt();
|
||||
// covariance
|
||||
let cv = 1_f64 / n as f64
|
||||
* tests
|
||||
.iter()
|
||||
.map(|t| (t.0 - avg_x) * (t.1 - avg_y))
|
||||
.sum::<f64>();
|
||||
// Pearson correlation
|
||||
let correlation = cv / (sd_x * sd_y);
|
||||
println!("correlation: {:.6?}", correlation);
|
||||
assert!(
|
||||
correlation.abs() < 0.01,
|
||||
"execution time correlates with result"
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user