implement test to statistically check constant run time of memcmp (feature: constant_time_tests)

This commit is contained in:
Ilka Schulz
2024-02-28 12:00:24 +01:00
committed by Karolin Varner
parent 8c469af6b1
commit 36c99c020e
3 changed files with 96 additions and 0 deletions

1
Cargo.lock generated
View File

@@ -1168,6 +1168,7 @@ name = "rosenpass-constant-time"
version = "0.1.0"
dependencies = [
"memsec",
"rand",
"rosenpass-to",
]

View File

@@ -11,6 +11,12 @@ readme = "readme.md"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[features]
constant_time_tests = []
[dependencies]
rosenpass-to = { workspace = true }
memsec = { workspace = true }
[dev-dependencies]
rand = "0.8.5"

View File

@@ -77,3 +77,92 @@ pub fn increment(v: &mut [u8]) {
*black_box(&mut carry) = black_box(black_box(c) as u8);
}
}
#[cfg(all(test, feature = "constant_time_tests"))]
mod constant_time_tests {
use super::*;
use rand::seq::SliceRandom;
use rand::thread_rng;
use std::time::Instant;
#[test]
/// tests whether [memcmp] actually runs in constant time
///
/// This test function will run an equal amount of comparisons on two different sets of parameters:
/// - completely equal slices
/// - completely unequal slices.
/// All comparisons are executed in a randomized order. The test will fail if one of the
/// two sets is checked for equality significantly faster than the other set
/// (absolute correlation coefficient ≥ 0.01)
fn memcmp_runs_in_constant_time() {
// prepare data to compare
let n: usize = 1E6 as usize; // number of comparisons to run
let len = 1024; // length of each slice passed as parameters to the tested comparison function
let a1 = "a".repeat(len);
let a2 = a1.clone();
let b = "b".repeat(len);
let a1 = a1.as_bytes();
let a2 = a2.as_bytes();
let b = b.as_bytes();
// vector representing all timing tests
//
// Each element is a tuple of:
// 0: whether the test compared two equal slices
// 1: the duration needed for the comparison to run
let mut tests = (0..n)
.map(|i| (i < n / 2, std::time::Duration::ZERO))
.collect::<Vec<_>>();
tests.shuffle(&mut thread_rng());
// run comparisons / call function to test
for test in tests.iter_mut() {
let now = Instant::now();
if test.0 {
memcmp(a1, a2);
} else {
memcmp(a1, b);
}
test.1 = now.elapsed();
// println!("eq: {}, elapsed: {:.2?}", test.0, test.1);
}
// sort by execution time and calculate Pearson correlation coefficient
tests.sort_by_key(|v| v.1);
let tests = tests
.iter()
.map(|t| (if t.0 { 1_f64 } else { 0_f64 }, t.1.as_nanos() as f64))
.collect::<Vec<_>>();
// averages
let (avg_x, avg_y): (f64, f64) = (
tests.iter().map(|t| t.0).sum::<f64>() / n as f64,
tests.iter().map(|t| t.1).sum::<f64>() / n as f64,
);
assert!((avg_x - 0.5).abs() < 1E-12);
// standard deviations
let sd_x = 0.5;
let sd_y = (1_f64 / n as f64
* tests
.iter()
.map(|t| {
let difference = t.1 - avg_y;
difference * difference
})
.sum::<f64>())
.sqrt();
// covariance
let cv = 1_f64 / n as f64
* tests
.iter()
.map(|t| (t.0 - avg_x) * (t.1 - avg_y))
.sum::<f64>();
// Pearson correlation
let correlation = cv / (sd_x * sd_y);
println!("correlation: {:.6?}", correlation);
assert!(
correlation.abs() < 0.01,
"execution time correlates with result"
)
}
}