mirror of
https://github.com/SWivid/F5-TTS.git
synced 2025-12-12 15:50:07 -08:00
Compare commits
142 Commits
0.6.2
...
e67d50841e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e67d50841e | ||
|
|
6b07fb03b2 | ||
|
|
a051a68552 | ||
|
|
f2a4f8581f | ||
|
|
a17c5ae435 | ||
|
|
a0b8fb5df2 | ||
|
|
c8bfc3aa3d | ||
|
|
8d3ec72159 | ||
|
|
65ada48a62 | ||
|
|
77d3ec623b | ||
|
|
186799d6dc | ||
|
|
31bb78f2ab | ||
|
|
e61824009a | ||
|
|
06a74910bd | ||
|
|
ac3c43595c | ||
|
|
605fa13b42 | ||
|
|
5f35f27230 | ||
|
|
c96c3aeed8 | ||
|
|
9b60fe6a34 | ||
|
|
a275798a2f | ||
|
|
efc7a7498b | ||
|
|
9842314127 | ||
|
|
69b0e0110e | ||
|
|
52c84776e5 | ||
|
|
ebbd7bd91f | ||
|
|
ac42286d04 | ||
|
|
d937efa6f3 | ||
|
|
8975fca803 | ||
|
|
8b0053ad0c | ||
|
|
b3ef4ed1d7 | ||
|
|
b1a9438496 | ||
|
|
0914170e98 | ||
|
|
c6ebad0220 | ||
|
|
cfaba6387f | ||
|
|
646f34b20f | ||
|
|
2e2acc6ea2 | ||
|
|
6fbe7592f5 | ||
|
|
7e37bc5d9a | ||
|
|
35f130ee85 | ||
|
|
e6469f705f | ||
|
|
31cd818095 | ||
|
|
1d13664b24 | ||
|
|
b27471ea06 | ||
|
|
8fb55f107e | ||
|
|
ccb380b752 | ||
|
|
3027b43953 | ||
|
|
ecd1c3949a | ||
|
|
2968aa184f | ||
|
|
fb26b6d93e | ||
|
|
f7f266cdd9 | ||
|
|
695c735737 | ||
|
|
3e2a07da1d | ||
|
|
c47687487c | ||
|
|
ac79d0ec1e | ||
|
|
dad398c0c1 | ||
|
|
3d969bf78d | ||
|
|
7c741c05f9 | ||
|
|
6d1a1e886a | ||
|
|
b4efcd836a | ||
|
|
818b868fab | ||
|
|
e6fee5e9ba | ||
|
|
2de214c122 | ||
|
|
2999f642ce | ||
|
|
03cff73343 | ||
|
|
63c513840d | ||
|
|
3e6b6c0c0c | ||
|
|
f00ac4d06b | ||
|
|
b0658bfd24 | ||
|
|
0cae51d646 | ||
|
|
95976041f2 | ||
|
|
ba1bf74215 | ||
|
|
536c29ac57 | ||
|
|
c4c61b0110 | ||
|
|
5f80fec160 | ||
|
|
178cb8afe6 | ||
|
|
761c7ed938 | ||
|
|
13fd6f8e07 | ||
|
|
b2284b6cff | ||
|
|
4b4359bc39 | ||
|
|
fe5c562212 | ||
|
|
2374f8ec39 | ||
|
|
f4f10bff6c | ||
|
|
9771ec6a3a | ||
|
|
4b3cd13382 | ||
|
|
25b3291715 | ||
|
|
16c480a61d | ||
|
|
d9dfbe47cc | ||
|
|
d1f6c95fe8 | ||
|
|
2428d01a56 | ||
|
|
9401842930 | ||
|
|
eca56943ec | ||
|
|
ae51cc3d34 | ||
|
|
4681a1c177 | ||
|
|
5b178397e0 | ||
|
|
2724f9f101 | ||
|
|
7258b09529 | ||
|
|
784e3862b4 | ||
|
|
6f6968b034 | ||
|
|
9bd2d13be1 | ||
|
|
b7c41af9cd | ||
|
|
eaa7fd8a01 | ||
|
|
f34465d118 | ||
|
|
393993321d | ||
|
|
29d3326bed | ||
|
|
67e43dc0fb | ||
|
|
8469025b1c | ||
|
|
5bd8cd7aed | ||
|
|
7236536f9a | ||
|
|
6b7f6eefdc | ||
|
|
b9156c0ad5 | ||
|
|
3ad3211915 | ||
|
|
f6726a78cc | ||
|
|
1d0cf2b8ba | ||
|
|
1d82b7928e | ||
|
|
4ae5347282 | ||
|
|
621559cbbe | ||
|
|
526b09eebd | ||
|
|
9afa80f204 | ||
|
|
c6b3189bbd | ||
|
|
c87ce39515 | ||
|
|
10ef27065b | ||
|
|
f374640f34 | ||
|
|
d5f4c88aa4 | ||
|
|
f968e13b6d | ||
|
|
339b17fed3 | ||
|
|
79302b694a | ||
|
|
a1e88c2a9e | ||
|
|
1ab90505a4 | ||
|
|
7e4985ca56 | ||
|
|
f05ceda4cb | ||
|
|
2bd39dd813 | ||
|
|
f017815083 | ||
|
|
297755fac3 | ||
|
|
d05075205f | ||
|
|
8722cf0766 | ||
|
|
48d1a9312e | ||
|
|
128f4e4bf3 | ||
|
|
2695e9305d | ||
|
|
69909ac167 | ||
|
|
79bbde5d76 | ||
|
|
bf651d541e | ||
|
|
ca6e49adaa |
12
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
12
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
@@ -1,6 +1,6 @@
|
||||
name: "Bug Report"
|
||||
description: |
|
||||
Please provide as much details to help address the issue, including logs and screenshots.
|
||||
Please provide as much details to help address the issue more efficiently, including input, output, logs and screenshots.
|
||||
labels:
|
||||
- bug
|
||||
body:
|
||||
@@ -15,13 +15,13 @@ body:
|
||||
required: true
|
||||
- label: I have searched for existing issues, including closed ones, and couldn't find a solution.
|
||||
required: true
|
||||
- label: I confirm that I am using English to submit this report in order to facilitate communication.
|
||||
- label: I am using English to submit this issue to facilitate community communication.
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Environment Details
|
||||
description: "Provide details such as OS, Python version, and any relevant software or dependencies."
|
||||
placeholder: e.g., CentOS Linux 7, RTX 3090, Python 3.10, torch==2.3.0, cuda 11.8
|
||||
description: "Provide details including OS, GPU info, Python version, any relevant software or dependencies, and trainer setting."
|
||||
placeholder: e.g., CentOS Linux 7, 4 * RTX 3090, Python 3.10, torch==2.3.0+cu118, cuda 11.8, config yaml is ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
@@ -39,12 +39,12 @@ body:
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: ✔️ Expected Behavior
|
||||
placeholder: Describe what you expected to happen.
|
||||
placeholder: Describe in detail what you expected to happen.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: ❌ Actual Behavior
|
||||
placeholder: Describe what actually happened.
|
||||
placeholder: Describe in detail what actually happened.
|
||||
validations:
|
||||
required: false
|
||||
2
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
2
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
@@ -15,7 +15,7 @@ body:
|
||||
required: true
|
||||
- label: I have searched for existing issues, including closed ones, and found not discussion yet.
|
||||
required: true
|
||||
- label: I confirm that I am using English to submit this report in order to facilitate communication.
|
||||
- label: I am using English to submit this issue to facilitate community communication.
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
|
||||
16
.github/ISSUE_TEMPLATE/help_wanted.yml
vendored
16
.github/ISSUE_TEMPLATE/help_wanted.yml
vendored
@@ -1,6 +1,6 @@
|
||||
name: "Help Wanted"
|
||||
description: |
|
||||
Please provide as much details to help address the issue, including logs and screenshots.
|
||||
Please provide as much details to help address the issue more efficiently, including input, output, logs and screenshots.
|
||||
labels:
|
||||
- help wanted
|
||||
body:
|
||||
@@ -15,36 +15,40 @@ body:
|
||||
required: true
|
||||
- label: I have searched for existing issues, including closed ones, and couldn't find a solution.
|
||||
required: true
|
||||
- label: I confirm that I am using English to submit this report in order to facilitate communication.
|
||||
- label: I am using English to submit this issue to facilitate community communication.
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Environment Details
|
||||
description: "Provide details such as OS, Python version, and any relevant software or dependencies."
|
||||
placeholder: e.g., macOS 13.5, Python 3.10, torch==2.3.0, Gradio 4.44.1
|
||||
placeholder: |
|
||||
e.g., macOS 13.5, Python 3.10, torch==2.3.0, Gradio 4.44.1
|
||||
If training or finetuning related, provide detailed configuration including GPU info and training setup.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Steps to Reproduce
|
||||
description: |
|
||||
Include detailed steps, screenshots, and logs. Use the correct markdown syntax for code blocks.
|
||||
Include detailed steps, screenshots, and logs. Provide used prompt wav and text. Use the correct markdown syntax for code blocks.
|
||||
placeholder: |
|
||||
1. Create a new conda environment.
|
||||
2. Clone the repository and install as pip package.
|
||||
3. Run the command: `f5-tts_infer-gradio` with no ref_text provided.
|
||||
4. Stuck there with the following message... (attach logs and also error msg e.g. after ctrl-c).
|
||||
5. Prompt & generated wavs are [change suffix to .mp4 to enable direct upload or pack all to .zip].
|
||||
6. Reference audio's transcription or provided ref_text is `xxx`, and text to generate is `xxx`.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: ✔️ Expected Behavior
|
||||
placeholder: Describe what you expected to happen, e.g. output a generated audio
|
||||
placeholder: Describe what you expected to happen in detail, e.g. output a generated audio.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: ❌ Actual Behavior
|
||||
placeholder: Describe what actually happened, failure messages, etc.
|
||||
placeholder: Describe what actually happened in detail, failure messages, etc.
|
||||
validations:
|
||||
required: false
|
||||
6
.github/ISSUE_TEMPLATE/question.yml
vendored
6
.github/ISSUE_TEMPLATE/question.yml
vendored
@@ -1,6 +1,6 @@
|
||||
name: "Question"
|
||||
description: |
|
||||
Pure question or inquiry about the project, usage issue goes with "help wanted".
|
||||
Research question or pure inquiry about the project, usage issue goes with "help wanted".
|
||||
labels:
|
||||
- question
|
||||
body:
|
||||
@@ -9,13 +9,13 @@ body:
|
||||
label: Checks
|
||||
description: "To help us grasp quickly, please confirm the following:"
|
||||
options:
|
||||
- label: This template is only for question, not feature requests or bug reports.
|
||||
- label: This template is only for research question, not usage problems, feature requests or bug reports.
|
||||
required: true
|
||||
- label: I have thoroughly reviewed the project documentation and read the related paper(s).
|
||||
required: true
|
||||
- label: I have searched for existing issues, including closed ones, no similar questions.
|
||||
required: true
|
||||
- label: I confirm that I am using English to submit this report in order to facilitate communication.
|
||||
- label: I am using English to submit this issue to facilitate community communication.
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
|
||||
66
.github/workflows/publish-pypi.yaml
vendored
Normal file
66
.github/workflows/publish-pypi.yaml
vendored
Normal file
@@ -0,0 +1,66 @@
|
||||
# This workflow uses actions that are not certified by GitHub.
|
||||
# They are provided by a third-party and are governed by
|
||||
# separate terms of service, privacy policy, and support
|
||||
# documentation.
|
||||
|
||||
# GitHub recommends pinning actions to a commit SHA.
|
||||
# To get a newer version, you will need to update the SHA.
|
||||
# You can also reference a tag or branch, but the action may change without warning.
|
||||
|
||||
name: Upload Python Package
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
release-build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.x"
|
||||
|
||||
- name: Build release distributions
|
||||
run: |
|
||||
# NOTE: put your own distribution build steps here.
|
||||
python -m pip install build
|
||||
python -m build
|
||||
|
||||
- name: Upload distributions
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: release-dists
|
||||
path: dist/
|
||||
|
||||
pypi-publish:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
needs:
|
||||
- release-build
|
||||
|
||||
permissions:
|
||||
# IMPORTANT: this permission is mandatory for trusted publishing
|
||||
id-token: write
|
||||
|
||||
# Dedicated environments with protections for publishing are strongly recommended.
|
||||
environment:
|
||||
name: pypi
|
||||
# OPTIONAL: uncomment and update to include your PyPI project URL in the deployment status:
|
||||
# url: https://pypi.org/p/YOURPROJECT
|
||||
|
||||
steps:
|
||||
- name: Retrieve release distributions
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: release-dists
|
||||
path: dist/
|
||||
|
||||
- name: Publish release distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
18
.github/workflows/sync-hf.yaml
vendored
18
.github/workflows/sync-hf.yaml
vendored
@@ -1,18 +0,0 @@
|
||||
name: Sync to HF Space
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
trigger_curl:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Send cURL POST request
|
||||
run: |
|
||||
curl -X POST https://mrfakename-sync-f5.hf.space/gradio_api/call/refresh \
|
||||
-s \
|
||||
-H "Content-Type: application/json" \
|
||||
-d "{\"data\": [\"${{ secrets.REFRESH_PASSWORD }}\"]}"
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -7,8 +7,6 @@ ckpts/
|
||||
wandb/
|
||||
results/
|
||||
|
||||
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
|
||||
@@ -1,14 +1,17 @@
|
||||
repos:
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
# Ruff version.
|
||||
rev: v0.7.0
|
||||
rev: v0.11.2
|
||||
hooks:
|
||||
# Run the linter.
|
||||
- id: ruff
|
||||
name: ruff linter
|
||||
args: [--fix]
|
||||
# Run the formatter.
|
||||
- id: ruff-format
|
||||
name: ruff formatter
|
||||
- id: ruff
|
||||
name: ruff sorter
|
||||
args: [--select, I, --fix]
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v2.3.0
|
||||
rev: v5.0.0
|
||||
hooks:
|
||||
- id: check-yaml
|
||||
|
||||
@@ -23,4 +23,8 @@ RUN git clone https://github.com/SWivid/F5-TTS.git \
|
||||
|
||||
ENV SHELL=/bin/bash
|
||||
|
||||
VOLUME /root/.cache/huggingface/hub/
|
||||
|
||||
EXPOSE 7860
|
||||
|
||||
WORKDIR /workspace/F5-TTS
|
||||
|
||||
70
README.md
70
README.md
@@ -2,11 +2,12 @@
|
||||
|
||||
[](https://github.com/SWivid/F5-TTS)
|
||||
[](https://arxiv.org/abs/2410.06885)
|
||||
[](https://swivid.github.io/F5-TTS/)
|
||||
[](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
||||
[](https://modelscope.cn/studios/modelscope/E2-F5-TTS)
|
||||
[](https://x-lance.sjtu.edu.cn/)
|
||||
[](https://www.pcl.ac.cn)
|
||||
[](https://swivid.github.io/F5-TTS/)
|
||||
[](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
||||
[](https://modelscope.cn/studios/AI-ModelScope/E2-F5-TTS)
|
||||
[](https://x-lance.sjtu.edu.cn/)
|
||||
[](https://www.sii.edu.cn/)
|
||||
[](https://www.pcl.ac.cn)
|
||||
<!-- <img src="https://github.com/user-attachments/assets/12d7749c-071a-427c-81bf-b87b91def670" alt="Watermark" style="width: 40px; height: auto"> -->
|
||||
|
||||
**F5-TTS**: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
|
||||
@@ -18,6 +19,7 @@
|
||||
### Thanks to all the contributors !
|
||||
|
||||
## News
|
||||
- **2025/03/12**: 🔥 F5-TTS v1 base model with better training and inference performance. [Few demo](https://swivid.github.io/F5-TTS_updates).
|
||||
- **2024/10/08**: F5-TTS & E2 TTS base models on [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS), [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), [🟣 Wisemodel](https://wisemodel.cn/models/SJTU_X-LANCE/F5-TTS_Emilia-ZH-EN).
|
||||
|
||||
## Installation
|
||||
@@ -25,8 +27,8 @@
|
||||
### Create a separate environment if needed
|
||||
|
||||
```bash
|
||||
# Create a python 3.10 conda env (you could also use virtualenv)
|
||||
conda create -n f5-tts python=3.10
|
||||
# Create a conda env with python_version>=3.10 (you could also use virtualenv)
|
||||
conda create -n f5-tts python=3.11
|
||||
conda activate f5-tts
|
||||
```
|
||||
|
||||
@@ -37,7 +39,7 @@ conda activate f5-tts
|
||||
|
||||
> ```bash
|
||||
> # Install pytorch with your CUDA version, e.g.
|
||||
> pip install torch==2.3.0+cu118 torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
|
||||
> pip install torch==2.4.0+cu124 torchaudio==2.4.0+cu124 --extra-index-url https://download.pytorch.org/whl/cu124
|
||||
> ```
|
||||
|
||||
</details>
|
||||
@@ -82,7 +84,7 @@ conda activate f5-tts
|
||||
> ### 1. As a pip package (if just for inference)
|
||||
>
|
||||
> ```bash
|
||||
> pip install git+https://github.com/SWivid/F5-TTS.git
|
||||
> pip install f5-tts
|
||||
> ```
|
||||
>
|
||||
> ### 2. Local editable (if also do training, finetuning)
|
||||
@@ -90,7 +92,7 @@ conda activate f5-tts
|
||||
> ```bash
|
||||
> git clone https://github.com/SWivid/F5-TTS.git
|
||||
> cd F5-TTS
|
||||
> # git submodule update --init --recursive # (optional, if need > bigvgan)
|
||||
> # git submodule update --init --recursive # (optional, if use bigvgan as vocoder)
|
||||
> pip install -e .
|
||||
> ```
|
||||
|
||||
@@ -99,13 +101,34 @@ conda activate f5-tts
|
||||
# Build from Dockerfile
|
||||
docker build -t f5tts:v1 .
|
||||
|
||||
# Or pull from GitHub Container Registry
|
||||
docker pull ghcr.io/swivid/f5-tts:main
|
||||
# Run from GitHub Container Registry
|
||||
docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main
|
||||
|
||||
# Quickstart if you want to just run the web interface (not CLI)
|
||||
docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main f5-tts_infer-gradio --host 0.0.0.0
|
||||
```
|
||||
|
||||
### Runtime
|
||||
|
||||
Deployment solution with Triton and TensorRT-LLM.
|
||||
|
||||
#### Benchmark Results
|
||||
Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE.
|
||||
|
||||
| Model | Concurrency | Avg Latency | RTF | Mode |
|
||||
|---------------------|----------------|-------------|--------|-----------------|
|
||||
| F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server |
|
||||
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM |
|
||||
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch |
|
||||
|
||||
See [detailed instructions](src/f5_tts/runtime/triton_trtllm/README.md) for more information.
|
||||
|
||||
|
||||
## Inference
|
||||
|
||||
- In order to achieve desired performance, take a moment to read [detailed guidance](src/f5_tts/infer).
|
||||
- By properly searching the keywords of problem encountered, [issues](https://github.com/SWivid/F5-TTS/issues?q=is%3Aissue) are very helpful.
|
||||
|
||||
### 1. Gradio App
|
||||
|
||||
Currently supported features:
|
||||
@@ -158,9 +181,8 @@ volumes:
|
||||
```bash
|
||||
# Run with flags
|
||||
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
|
||||
f5-tts_infer-cli \
|
||||
--model "F5-TTS" \
|
||||
--ref_audio "ref_audio.wav" \
|
||||
f5-tts_infer-cli --model F5TTS_v1_Base \
|
||||
--ref_audio "provide_prompt_wav_path_here.wav" \
|
||||
--ref_text "The content, subtitle or transcription of reference audio." \
|
||||
--gen_text "Some text you want TTS model generate for you."
|
||||
|
||||
@@ -173,30 +195,29 @@ f5-tts_infer-cli -c custom.toml
|
||||
f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml
|
||||
```
|
||||
|
||||
### 3. More instructions
|
||||
|
||||
- In order to have better generation results, take a moment to read [detailed guidance](src/f5_tts/infer).
|
||||
- The [Issues](https://github.com/SWivid/F5-TTS/issues?q=is%3Aissue) are very useful, please try to find the solution by properly searching the keywords of problem encountered. If no answer found, then feel free to open an issue.
|
||||
|
||||
|
||||
## Training
|
||||
|
||||
### 1. Gradio App
|
||||
### 1. With Hugging Face Accelerate
|
||||
|
||||
Read [training & finetuning guidance](src/f5_tts/train) for more instructions.
|
||||
Refer to [training & finetuning guidance](src/f5_tts/train) for best practice.
|
||||
|
||||
### 2. With Gradio App
|
||||
|
||||
```bash
|
||||
# Quick start with Gradio web interface
|
||||
f5-tts_finetune-gradio
|
||||
```
|
||||
|
||||
Read [training & finetuning guidance](src/f5_tts/train) for more instructions.
|
||||
|
||||
|
||||
## [Evaluation](src/f5_tts/eval)
|
||||
|
||||
|
||||
## Development
|
||||
|
||||
Use pre-commit to ensure code quality (will run linters and formatters automatically)
|
||||
Use pre-commit to ensure code quality (will run linters and formatters automatically):
|
||||
|
||||
```bash
|
||||
pip install pre-commit
|
||||
@@ -209,7 +230,7 @@ When making a pull request, before each commit, run:
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
Note: Some model components have linting exceptions for E722 to accommodate tensor notation
|
||||
Note: Some model components have linting exceptions for E722 to accommodate tensor notation.
|
||||
|
||||
|
||||
## Acknowledgements
|
||||
@@ -224,6 +245,7 @@ Note: Some model components have linting exceptions for E722 to accommodate tens
|
||||
- [mrfakename](https://x.com/realmrfakename) huggingface space demo ~
|
||||
- [f5-tts-mlx](https://github.com/lucasnewman/f5-tts-mlx/tree/main) Implementation with MLX framework by [Lucas Newman](https://github.com/lucasnewman)
|
||||
- [F5-TTS-ONNX](https://github.com/DakeQQ/F5-TTS-ONNX) ONNX Runtime version by [DakeQQ](https://github.com/DakeQQ)
|
||||
- [Yuekai Zhang](https://github.com/yuekaizhang) Triton and TensorRT-LLM support ~
|
||||
|
||||
## Citation
|
||||
If our work and codebase is useful for you, please cite as:
|
||||
|
||||
@@ -1,10 +1,3 @@
|
||||
The pretrained model checkpoints can be reached at https://huggingface.co/SWivid/F5-TTS.
|
||||
|
||||
Pretrained model ckpts. https://huggingface.co/SWivid/F5-TTS
|
||||
|
||||
```
|
||||
ckpts/
|
||||
E2TTS_Base/
|
||||
model_1200000.pt
|
||||
F5TTS_Base/
|
||||
model_1200000.pt
|
||||
```
|
||||
Scripts will automatically pull model checkpoints from Huggingface, by default to `~/.cache/huggingface/hub/`.
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "f5-tts"
|
||||
version = "0.6.2"
|
||||
version = "1.1.9"
|
||||
description = "F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching"
|
||||
readme = "README.md"
|
||||
license = {text = "MIT License"}
|
||||
@@ -15,18 +15,18 @@ classifiers = [
|
||||
]
|
||||
dependencies = [
|
||||
"accelerate>=0.33.0",
|
||||
"bitsandbytes>0.37.0; platform_machine != 'arm64' and platform_system != 'Darwin'",
|
||||
"bitsandbytes>0.37.0; platform_machine!='arm64' and platform_system!='Darwin'",
|
||||
"cached_path",
|
||||
"click",
|
||||
"datasets",
|
||||
"ema_pytorch>=0.5.2",
|
||||
"gradio>=3.45.2",
|
||||
"gradio>=5.0.0",
|
||||
"hydra-core>=1.3.0",
|
||||
"jieba",
|
||||
"librosa",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy<=1.26.4",
|
||||
"numpy<=1.26.4; python_version<='3.10'",
|
||||
"pydantic<=2.10.6",
|
||||
"pydub",
|
||||
"pypinyin",
|
||||
"safetensors",
|
||||
@@ -38,6 +38,7 @@ dependencies = [
|
||||
"tqdm>=4.65.0",
|
||||
"transformers",
|
||||
"transformers_stream_generator",
|
||||
"unidecode",
|
||||
"vocos",
|
||||
"wandb",
|
||||
"x_transformers>=1.31.14",
|
||||
|
||||
@@ -6,5 +6,5 @@ target-version = "py310"
|
||||
dummy-variable-rgx = "^_.*$"
|
||||
|
||||
[lint.isort]
|
||||
force-single-line = true
|
||||
force-single-line = false
|
||||
lines-after-imports = 2
|
||||
|
||||
@@ -5,9 +5,10 @@ from importlib.resources import files
|
||||
import soundfile as sf
|
||||
import tqdm
|
||||
from cached_path import cached_path
|
||||
from hydra.utils import get_class
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from f5_tts.infer.utils_infer import (
|
||||
hop_length,
|
||||
infer_process,
|
||||
load_model,
|
||||
load_vocoder,
|
||||
@@ -15,33 +16,32 @@ from f5_tts.infer.utils_infer import (
|
||||
remove_silence_for_generated_wav,
|
||||
save_spectrogram,
|
||||
transcribe,
|
||||
target_sample_rate,
|
||||
)
|
||||
from f5_tts.model import DiT, UNetT
|
||||
from f5_tts.model.utils import seed_everything
|
||||
|
||||
|
||||
class F5TTS:
|
||||
def __init__(
|
||||
self,
|
||||
model_type="F5-TTS",
|
||||
model="F5TTS_v1_Base",
|
||||
ckpt_file="",
|
||||
vocab_file="",
|
||||
ode_method="euler",
|
||||
use_ema=True,
|
||||
vocoder_name="vocos",
|
||||
local_path=None,
|
||||
vocoder_local_path=None,
|
||||
device=None,
|
||||
hf_cache_dir=None,
|
||||
):
|
||||
# Initialize parameters
|
||||
self.final_wave = None
|
||||
self.target_sample_rate = target_sample_rate
|
||||
self.hop_length = hop_length
|
||||
self.seed = -1
|
||||
self.mel_spec_type = vocoder_name
|
||||
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
|
||||
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
|
||||
model_arc = model_cfg.model.arch
|
||||
|
||||
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
|
||||
self.target_sample_rate = model_cfg.model.mel_spec.target_sample_rate
|
||||
|
||||
self.ode_method = ode_method
|
||||
self.use_ema = use_ema
|
||||
|
||||
# Set device
|
||||
if device is not None:
|
||||
self.device = device
|
||||
else:
|
||||
@@ -58,39 +58,29 @@ class F5TTS:
|
||||
)
|
||||
|
||||
# Load models
|
||||
self.load_vocoder_model(vocoder_name, local_path=local_path, hf_cache_dir=hf_cache_dir)
|
||||
self.load_ema_model(
|
||||
model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema, hf_cache_dir=hf_cache_dir
|
||||
self.vocoder = load_vocoder(
|
||||
self.mel_spec_type, vocoder_local_path is not None, vocoder_local_path, self.device, hf_cache_dir
|
||||
)
|
||||
|
||||
def load_vocoder_model(self, vocoder_name, local_path=None, hf_cache_dir=None):
|
||||
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device, hf_cache_dir)
|
||||
repo_name, ckpt_step, ckpt_type = "F5-TTS", 1250000, "safetensors"
|
||||
|
||||
def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, hf_cache_dir=None):
|
||||
if model_type == "F5-TTS":
|
||||
if not ckpt_file:
|
||||
if mel_spec_type == "vocos":
|
||||
ckpt_file = str(
|
||||
cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
|
||||
)
|
||||
elif mel_spec_type == "bigvgan":
|
||||
ckpt_file = str(
|
||||
cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt", cache_dir=hf_cache_dir)
|
||||
)
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
model_cls = DiT
|
||||
elif model_type == "E2-TTS":
|
||||
if not ckpt_file:
|
||||
ckpt_file = str(
|
||||
cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
|
||||
)
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
model_cls = UNetT
|
||||
else:
|
||||
raise ValueError(f"Unknown model type: {model_type}")
|
||||
# override for previous models
|
||||
if model == "F5TTS_Base":
|
||||
if self.mel_spec_type == "vocos":
|
||||
ckpt_step = 1200000
|
||||
elif self.mel_spec_type == "bigvgan":
|
||||
model = "F5TTS_Base_bigvgan"
|
||||
ckpt_type = "pt"
|
||||
elif model == "E2TTS_Base":
|
||||
repo_name = "E2-TTS"
|
||||
ckpt_step = 1200000
|
||||
|
||||
if not ckpt_file:
|
||||
ckpt_file = str(
|
||||
cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}", cache_dir=hf_cache_dir)
|
||||
)
|
||||
self.ema_model = load_model(
|
||||
model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
|
||||
model_cls, model_arc, ckpt_file, self.mel_spec_type, vocab_file, self.ode_method, self.use_ema, self.device
|
||||
)
|
||||
|
||||
def transcribe(self, ref_audio, language=None):
|
||||
@@ -102,8 +92,8 @@ class F5TTS:
|
||||
if remove_silence:
|
||||
remove_silence_for_generated_wav(file_wave)
|
||||
|
||||
def export_spectrogram(self, spect, file_spect):
|
||||
save_spectrogram(spect, file_spect)
|
||||
def export_spectrogram(self, spec, file_spec):
|
||||
save_spectrogram(spec, file_spec)
|
||||
|
||||
def infer(
|
||||
self,
|
||||
@@ -121,17 +111,17 @@ class F5TTS:
|
||||
fix_duration=None,
|
||||
remove_silence=False,
|
||||
file_wave=None,
|
||||
file_spect=None,
|
||||
seed=-1,
|
||||
file_spec=None,
|
||||
seed=None,
|
||||
):
|
||||
if seed == -1:
|
||||
if seed is None:
|
||||
seed = random.randint(0, sys.maxsize)
|
||||
seed_everything(seed)
|
||||
self.seed = seed
|
||||
|
||||
ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
|
||||
ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text)
|
||||
|
||||
wav, sr, spect = infer_process(
|
||||
wav, sr, spec = infer_process(
|
||||
ref_file,
|
||||
ref_text,
|
||||
gen_text,
|
||||
@@ -153,22 +143,22 @@ class F5TTS:
|
||||
if file_wave is not None:
|
||||
self.export_wav(wav, file_wave, remove_silence)
|
||||
|
||||
if file_spect is not None:
|
||||
self.export_spectrogram(spect, file_spect)
|
||||
if file_spec is not None:
|
||||
self.export_spectrogram(spec, file_spec)
|
||||
|
||||
return wav, sr, spect
|
||||
return wav, sr, spec
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
f5tts = F5TTS()
|
||||
|
||||
wav, sr, spect = f5tts.infer(
|
||||
wav, sr, spec = f5tts.infer(
|
||||
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
|
||||
ref_text="some call me nature, others call me mother nature.",
|
||||
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
||||
ref_text="Some call me nature, others call me mother nature.",
|
||||
gen_text="I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring.",
|
||||
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
|
||||
file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
|
||||
seed=-1, # random seed = -1
|
||||
file_spec=str(files("f5_tts").joinpath("../../tests/api_out.png")),
|
||||
seed=None,
|
||||
)
|
||||
|
||||
print("seed :", f5tts.seed)
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
hydra:
|
||||
run:
|
||||
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
|
||||
|
||||
datasets:
|
||||
name: Emilia_ZH_EN # dataset name
|
||||
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
||||
batch_size_type: frame # "frame" or "sample"
|
||||
batch_size_type: frame # frame | sample
|
||||
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
||||
num_workers: 16
|
||||
|
||||
optim:
|
||||
epochs: 15
|
||||
epochs: 11
|
||||
learning_rate: 7.5e-5
|
||||
num_warmup_updates: 20000 # warmup updates
|
||||
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
||||
@@ -20,25 +20,29 @@ optim:
|
||||
model:
|
||||
name: E2TTS_Base
|
||||
tokenizer: pinyin
|
||||
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
||||
tokenizer_path: null # if 'custom' tokenizer, define the path want to use (should be vocab.txt)
|
||||
backbone: UNetT
|
||||
arch:
|
||||
dim: 1024
|
||||
depth: 24
|
||||
heads: 16
|
||||
ff_mult: 4
|
||||
text_mask_padding: False
|
||||
pe_attn_head: 1
|
||||
mel_spec:
|
||||
target_sample_rate: 24000
|
||||
n_mel_channels: 100
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 1024
|
||||
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
||||
mel_spec_type: vocos # vocos | bigvgan
|
||||
vocoder:
|
||||
is_local: False # use local offline ckpt or not
|
||||
local_path: None # local vocoder path
|
||||
local_path: null # local vocoder path
|
||||
|
||||
ckpts:
|
||||
logger: wandb # wandb | tensorboard | None
|
||||
logger: wandb # wandb | tensorboard | null
|
||||
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
||||
save_per_updates: 50000 # save checkpoint per updates
|
||||
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
||||
last_per_updates: 5000 # save last checkpoint per updates
|
||||
@@ -1,16 +1,16 @@
|
||||
hydra:
|
||||
run:
|
||||
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
|
||||
|
||||
datasets:
|
||||
name: Emilia_ZH_EN
|
||||
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
||||
batch_size_type: frame # "frame" or "sample"
|
||||
batch_size_type: frame # frame | sample
|
||||
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
||||
num_workers: 16
|
||||
|
||||
optim:
|
||||
epochs: 15
|
||||
epochs: 11
|
||||
learning_rate: 7.5e-5
|
||||
num_warmup_updates: 20000 # warmup updates
|
||||
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
||||
@@ -20,25 +20,29 @@ optim:
|
||||
model:
|
||||
name: E2TTS_Small
|
||||
tokenizer: pinyin
|
||||
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
||||
tokenizer_path: null # if 'custom' tokenizer, define the path want to use (should be vocab.txt)
|
||||
backbone: UNetT
|
||||
arch:
|
||||
dim: 768
|
||||
depth: 20
|
||||
heads: 12
|
||||
ff_mult: 4
|
||||
text_mask_padding: False
|
||||
pe_attn_head: 1
|
||||
mel_spec:
|
||||
target_sample_rate: 24000
|
||||
n_mel_channels: 100
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 1024
|
||||
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
||||
mel_spec_type: vocos # vocos | bigvgan
|
||||
vocoder:
|
||||
is_local: False # use local offline ckpt or not
|
||||
local_path: None # local vocoder path
|
||||
local_path: null # local vocoder path
|
||||
|
||||
ckpts:
|
||||
logger: wandb # wandb | tensorboard | None
|
||||
logger: wandb # wandb | tensorboard | null
|
||||
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
||||
save_per_updates: 50000 # save checkpoint per updates
|
||||
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
||||
last_per_updates: 5000 # save last checkpoint per updates
|
||||
@@ -1,16 +1,16 @@
|
||||
hydra:
|
||||
run:
|
||||
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
|
||||
|
||||
datasets:
|
||||
name: Emilia_ZH_EN # dataset name
|
||||
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
||||
batch_size_type: frame # "frame" or "sample"
|
||||
batch_size_type: frame # frame | sample
|
||||
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
||||
num_workers: 16
|
||||
|
||||
optim:
|
||||
epochs: 15
|
||||
epochs: 11
|
||||
learning_rate: 7.5e-5
|
||||
num_warmup_updates: 20000 # warmup updates
|
||||
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
||||
@@ -20,14 +20,19 @@ optim:
|
||||
model:
|
||||
name: F5TTS_Base # model name
|
||||
tokenizer: pinyin # tokenizer type
|
||||
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
||||
tokenizer_path: null # if 'custom' tokenizer, define the path want to use (should be vocab.txt)
|
||||
backbone: DiT
|
||||
arch:
|
||||
dim: 1024
|
||||
depth: 22
|
||||
heads: 16
|
||||
ff_mult: 2
|
||||
text_dim: 512
|
||||
text_mask_padding: False
|
||||
conv_layers: 4
|
||||
pe_attn_head: 1
|
||||
attn_backend: torch # torch | flash_attn
|
||||
attn_mask_enabled: False
|
||||
checkpoint_activations: False # recompute activations and save memory for extra compute
|
||||
mel_spec:
|
||||
target_sample_rate: 24000
|
||||
@@ -35,13 +40,14 @@ model:
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 1024
|
||||
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
||||
mel_spec_type: vocos # vocos | bigvgan
|
||||
vocoder:
|
||||
is_local: False # use local offline ckpt or not
|
||||
local_path: None # local vocoder path
|
||||
local_path: null # local vocoder path
|
||||
|
||||
ckpts:
|
||||
logger: wandb # wandb | tensorboard | None
|
||||
logger: wandb # wandb | tensorboard | null
|
||||
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
||||
save_per_updates: 50000 # save checkpoint per updates
|
||||
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
||||
last_per_updates: 5000 # save last checkpoint per updates
|
||||
@@ -1,16 +1,16 @@
|
||||
hydra:
|
||||
run:
|
||||
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
|
||||
|
||||
datasets:
|
||||
name: Emilia_ZH_EN
|
||||
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
||||
batch_size_type: frame # "frame" or "sample"
|
||||
batch_size_type: frame # frame | sample
|
||||
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
||||
num_workers: 16
|
||||
|
||||
optim:
|
||||
epochs: 15
|
||||
epochs: 11 # only suitable for Emilia, if you want to train it on LibriTTS, set epoch 686
|
||||
learning_rate: 7.5e-5
|
||||
num_warmup_updates: 20000 # warmup updates
|
||||
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
||||
@@ -20,14 +20,19 @@ optim:
|
||||
model:
|
||||
name: F5TTS_Small
|
||||
tokenizer: pinyin
|
||||
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
||||
tokenizer_path: null # if 'custom' tokenizer, define the path want to use (should be vocab.txt)
|
||||
backbone: DiT
|
||||
arch:
|
||||
dim: 768
|
||||
depth: 18
|
||||
heads: 12
|
||||
ff_mult: 2
|
||||
text_dim: 512
|
||||
text_mask_padding: False
|
||||
conv_layers: 4
|
||||
pe_attn_head: 1
|
||||
attn_backend: torch # torch | flash_attn
|
||||
attn_mask_enabled: False
|
||||
checkpoint_activations: False # recompute activations and save memory for extra compute
|
||||
mel_spec:
|
||||
target_sample_rate: 24000
|
||||
@@ -35,14 +40,15 @@ model:
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 1024
|
||||
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
||||
mel_spec_type: vocos # vocos | bigvgan
|
||||
vocoder:
|
||||
is_local: False # use local offline ckpt or not
|
||||
local_path: None # local vocoder path
|
||||
local_path: null # local vocoder path
|
||||
|
||||
ckpts:
|
||||
logger: wandb # wandb | tensorboard | None
|
||||
logger: wandb # wandb | tensorboard | null
|
||||
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
||||
save_per_updates: 50000 # save checkpoint per updates
|
||||
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
||||
last_per_updates: 5000 # save last checkpoint per updates
|
||||
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
|
||||
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
|
||||
55
src/f5_tts/configs/F5TTS_v1_Base.yaml
Normal file
55
src/f5_tts/configs/F5TTS_v1_Base.yaml
Normal file
@@ -0,0 +1,55 @@
|
||||
hydra:
|
||||
run:
|
||||
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
||||
|
||||
datasets:
|
||||
name: Emilia_ZH_EN # dataset name
|
||||
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
||||
batch_size_type: frame # frame | sample
|
||||
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
||||
num_workers: 16
|
||||
|
||||
optim:
|
||||
epochs: 11
|
||||
learning_rate: 7.5e-5
|
||||
num_warmup_updates: 20000 # warmup updates
|
||||
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
||||
max_grad_norm: 1.0 # gradient clipping
|
||||
bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
|
||||
|
||||
model:
|
||||
name: F5TTS_v1_Base # model name
|
||||
tokenizer: pinyin # tokenizer type
|
||||
tokenizer_path: null # if 'custom' tokenizer, define the path want to use (should be vocab.txt)
|
||||
backbone: DiT
|
||||
arch:
|
||||
dim: 1024
|
||||
depth: 22
|
||||
heads: 16
|
||||
ff_mult: 2
|
||||
text_dim: 512
|
||||
text_mask_padding: True
|
||||
qk_norm: null # null | rms_norm
|
||||
conv_layers: 4
|
||||
pe_attn_head: null
|
||||
attn_backend: torch # torch | flash_attn
|
||||
attn_mask_enabled: False
|
||||
checkpoint_activations: False # recompute activations and save memory for extra compute
|
||||
mel_spec:
|
||||
target_sample_rate: 24000
|
||||
n_mel_channels: 100
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 1024
|
||||
mel_spec_type: vocos # vocos | bigvgan
|
||||
vocoder:
|
||||
is_local: False # use local offline ckpt or not
|
||||
local_path: null # local vocoder path
|
||||
|
||||
ckpts:
|
||||
logger: wandb # wandb | tensorboard | null
|
||||
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
||||
save_per_updates: 50000 # save checkpoint per updates
|
||||
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
||||
last_per_updates: 5000 # save last checkpoint per updates
|
||||
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
|
||||
@@ -4,6 +4,7 @@
|
||||
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
|
||||
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import argparse
|
||||
@@ -10,6 +11,8 @@ from importlib.resources import files
|
||||
import torch
|
||||
import torchaudio
|
||||
from accelerate import Accelerator
|
||||
from hydra.utils import get_class
|
||||
from omegaconf import OmegaConf
|
||||
from tqdm import tqdm
|
||||
|
||||
from f5_tts.eval.utils_eval import (
|
||||
@@ -18,36 +21,27 @@ from f5_tts.eval.utils_eval import (
|
||||
get_seedtts_testset_metainfo,
|
||||
)
|
||||
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
|
||||
from f5_tts.model import CFM, DiT, UNetT
|
||||
from f5_tts.model import CFM
|
||||
from f5_tts.model.utils import get_tokenizer
|
||||
|
||||
|
||||
accelerator = Accelerator()
|
||||
device = f"cuda:{accelerator.process_index}"
|
||||
|
||||
|
||||
# --------------------- Dataset Settings -------------------- #
|
||||
|
||||
target_sample_rate = 24000
|
||||
n_mel_channels = 100
|
||||
hop_length = 256
|
||||
win_length = 1024
|
||||
n_fft = 1024
|
||||
use_ema = True
|
||||
target_rms = 0.1
|
||||
|
||||
|
||||
rel_path = str(files("f5_tts").joinpath("../../"))
|
||||
|
||||
|
||||
def main():
|
||||
# ---------------------- infer setting ---------------------- #
|
||||
|
||||
parser = argparse.ArgumentParser(description="batch inference")
|
||||
|
||||
parser.add_argument("-s", "--seed", default=None, type=int)
|
||||
parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
|
||||
parser.add_argument("-n", "--expname", required=True)
|
||||
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
|
||||
parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])
|
||||
parser.add_argument("-to", "--tokenizer", default="pinyin", type=str, choices=["pinyin", "char"])
|
||||
parser.add_argument("-c", "--ckptstep", default=1250000, type=int)
|
||||
|
||||
parser.add_argument("-nfe", "--nfestep", default=32, type=int)
|
||||
parser.add_argument("-o", "--odemethod", default="euler")
|
||||
@@ -58,12 +52,8 @@ def main():
|
||||
args = parser.parse_args()
|
||||
|
||||
seed = args.seed
|
||||
dataset_name = args.dataset
|
||||
exp_name = args.expname
|
||||
ckpt_step = args.ckptstep
|
||||
ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
|
||||
mel_spec_type = args.mel_spec_type
|
||||
tokenizer = args.tokenizer
|
||||
|
||||
nfe_step = args.nfestep
|
||||
ode_method = args.odemethod
|
||||
@@ -77,13 +67,19 @@ def main():
|
||||
use_truth_duration = False
|
||||
no_ref_audio = False
|
||||
|
||||
if exp_name == "F5TTS_Base":
|
||||
model_cls = DiT
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{exp_name}.yaml")))
|
||||
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
|
||||
model_arc = model_cfg.model.arch
|
||||
|
||||
elif exp_name == "E2TTS_Base":
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
dataset_name = model_cfg.datasets.name
|
||||
tokenizer = model_cfg.model.tokenizer
|
||||
|
||||
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
|
||||
target_sample_rate = model_cfg.model.mel_spec.target_sample_rate
|
||||
n_mel_channels = model_cfg.model.mel_spec.n_mel_channels
|
||||
hop_length = model_cfg.model.mel_spec.hop_length
|
||||
win_length = model_cfg.model.mel_spec.win_length
|
||||
n_fft = model_cfg.model.mel_spec.n_fft
|
||||
|
||||
if testset == "ls_pc_test_clean":
|
||||
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
|
||||
@@ -111,8 +107,6 @@ def main():
|
||||
|
||||
# -------------------------------------------------#
|
||||
|
||||
use_ema = True
|
||||
|
||||
prompts_all = get_inference_prompt(
|
||||
metainfo,
|
||||
speed=speed,
|
||||
@@ -139,7 +133,7 @@ def main():
|
||||
|
||||
# Model
|
||||
model = CFM(
|
||||
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
||||
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
||||
mel_spec_kwargs=dict(
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
@@ -154,6 +148,15 @@ def main():
|
||||
vocab_char_map=vocab_char_map,
|
||||
).to(device)
|
||||
|
||||
ckpt_prefix = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}"
|
||||
if os.path.exists(ckpt_prefix + ".pt"):
|
||||
ckpt_path = ckpt_prefix + ".pt"
|
||||
elif os.path.exists(ckpt_prefix + ".safetensors"):
|
||||
ckpt_path = ckpt_prefix + ".safetensors"
|
||||
else:
|
||||
print("Loading from self-organized training checkpoints rather than released pretrained.")
|
||||
ckpt_path = rel_path + f"/{model_cfg.ckpts.save_dir}/model_{ckpt_step}.pt"
|
||||
|
||||
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
|
||||
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
|
||||
|
||||
@@ -200,7 +203,7 @@ def main():
|
||||
accelerator.wait_for_everyone()
|
||||
if accelerator.is_main_process:
|
||||
timediff = time.time() - start
|
||||
print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
|
||||
print(f"Done batch inference in {timediff / 60:.2f} minutes.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,13 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# e.g. F5-TTS, 16 NFE
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_v1_Base" -t "seedtts_test_zh" -nfe 16
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_v1_Base" -t "seedtts_test_en" -nfe 16
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_v1_Base" -t "ls_pc_test_clean" -nfe 16
|
||||
|
||||
# e.g. Vanilla E2 TTS, 32 NFE
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -c 1200000 -t "seedtts_test_zh" -o "midpoint" -ss 0
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -c 1200000 -t "seedtts_test_en" -o "midpoint" -ss 0
|
||||
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -c 1200000 -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
||||
|
||||
# e.g. evaluate F5-TTS 16 NFE result on Seed-TTS test-zh
|
||||
python src/f5_tts/eval/eval_seedtts_testset.py -e wer -l zh --gen_wav_dir results/F5TTS_v1_Base_1250000/seedtts_test_zh/seed0_euler_nfe32_vocos_ss-1_cfg2.0_speed1.0 --gpu_nums 8
|
||||
python src/f5_tts/eval/eval_seedtts_testset.py -e sim -l zh --gen_wav_dir results/F5TTS_v1_Base_1250000/seedtts_test_zh/seed0_euler_nfe32_vocos_ss-1_cfg2.0_speed1.0 --gpu_nums 8
|
||||
python src/f5_tts/eval/eval_utmos.py --audio_dir results/F5TTS_v1_Base_1250000/seedtts_test_zh/seed0_euler_nfe32_vocos_ss-1_cfg2.0_speed1.0
|
||||
|
||||
# etc.
|
||||
|
||||
@@ -5,17 +5,16 @@ import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import multiprocessing as mp
|
||||
from importlib.resources import files
|
||||
|
||||
import numpy as np
|
||||
from f5_tts.eval.utils_eval import (
|
||||
get_librispeech_test,
|
||||
run_asr_wer,
|
||||
run_sim,
|
||||
)
|
||||
|
||||
from f5_tts.eval.utils_eval import get_librispeech_test, run_asr_wer, run_sim
|
||||
|
||||
|
||||
rel_path = str(files("f5_tts").joinpath("../../"))
|
||||
|
||||
@@ -53,43 +52,37 @@ def main():
|
||||
asr_ckpt_dir = "" # auto download to cache dir
|
||||
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
||||
|
||||
# --------------------------- WER ---------------------------
|
||||
# --------------------------------------------------------------------------
|
||||
|
||||
full_results = []
|
||||
metrics = []
|
||||
|
||||
if eval_task == "wer":
|
||||
wer_results = []
|
||||
wers = []
|
||||
|
||||
with mp.Pool(processes=len(gpus)) as pool:
|
||||
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
||||
results = pool.map(run_asr_wer, args)
|
||||
for r in results:
|
||||
wer_results.extend(r)
|
||||
|
||||
wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
|
||||
with open(wer_result_path, "w") as f:
|
||||
for line in wer_results:
|
||||
wers.append(line["wer"])
|
||||
json_line = json.dumps(line, ensure_ascii=False)
|
||||
f.write(json_line + "\n")
|
||||
|
||||
wer = round(np.mean(wers) * 100, 3)
|
||||
print(f"\nTotal {len(wers)} samples")
|
||||
print(f"WER : {wer}%")
|
||||
print(f"Results have been saved to {wer_result_path}")
|
||||
|
||||
# --------------------------- SIM ---------------------------
|
||||
|
||||
if eval_task == "sim":
|
||||
sims = []
|
||||
full_results.extend(r)
|
||||
elif eval_task == "sim":
|
||||
with mp.Pool(processes=len(gpus)) as pool:
|
||||
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
||||
results = pool.map(run_sim, args)
|
||||
for r in results:
|
||||
sims.extend(r)
|
||||
full_results.extend(r)
|
||||
else:
|
||||
raise ValueError(f"Unknown metric type: {eval_task}")
|
||||
|
||||
sim = round(sum(sims) / len(sims), 3)
|
||||
print(f"\nTotal {len(sims)} samples")
|
||||
print(f"SIM : {sim}")
|
||||
result_path = f"{gen_wav_dir}/_{eval_task}_results.jsonl"
|
||||
with open(result_path, "w") as f:
|
||||
for line in full_results:
|
||||
metrics.append(line[eval_task])
|
||||
f.write(json.dumps(line, ensure_ascii=False) + "\n")
|
||||
metric = round(np.mean(metrics), 5)
|
||||
f.write(f"\n{eval_task.upper()}: {metric}\n")
|
||||
|
||||
print(f"\nTotal {len(metrics)} samples")
|
||||
print(f"{eval_task.upper()}: {metric}")
|
||||
print(f"{eval_task.upper()} results saved to {result_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -5,17 +5,16 @@ import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import multiprocessing as mp
|
||||
from importlib.resources import files
|
||||
|
||||
import numpy as np
|
||||
from f5_tts.eval.utils_eval import (
|
||||
get_seed_tts_test,
|
||||
run_asr_wer,
|
||||
run_sim,
|
||||
)
|
||||
|
||||
from f5_tts.eval.utils_eval import get_seed_tts_test, run_asr_wer, run_sim
|
||||
|
||||
|
||||
rel_path = str(files("f5_tts").joinpath("../../"))
|
||||
|
||||
@@ -52,43 +51,37 @@ def main():
|
||||
asr_ckpt_dir = "" # auto download to cache dir
|
||||
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
||||
|
||||
# --------------------------- WER ---------------------------
|
||||
# --------------------------------------------------------------------------
|
||||
|
||||
full_results = []
|
||||
metrics = []
|
||||
|
||||
if eval_task == "wer":
|
||||
wer_results = []
|
||||
wers = []
|
||||
|
||||
with mp.Pool(processes=len(gpus)) as pool:
|
||||
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
||||
results = pool.map(run_asr_wer, args)
|
||||
for r in results:
|
||||
wer_results.extend(r)
|
||||
|
||||
wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
|
||||
with open(wer_result_path, "w") as f:
|
||||
for line in wer_results:
|
||||
wers.append(line["wer"])
|
||||
json_line = json.dumps(line, ensure_ascii=False)
|
||||
f.write(json_line + "\n")
|
||||
|
||||
wer = round(np.mean(wers) * 100, 3)
|
||||
print(f"\nTotal {len(wers)} samples")
|
||||
print(f"WER : {wer}%")
|
||||
print(f"Results have been saved to {wer_result_path}")
|
||||
|
||||
# --------------------------- SIM ---------------------------
|
||||
|
||||
if eval_task == "sim":
|
||||
sims = []
|
||||
full_results.extend(r)
|
||||
elif eval_task == "sim":
|
||||
with mp.Pool(processes=len(gpus)) as pool:
|
||||
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
||||
results = pool.map(run_sim, args)
|
||||
for r in results:
|
||||
sims.extend(r)
|
||||
full_results.extend(r)
|
||||
else:
|
||||
raise ValueError(f"Unknown metric type: {eval_task}")
|
||||
|
||||
sim = round(sum(sims) / len(sims), 3)
|
||||
print(f"\nTotal {len(sims)} samples")
|
||||
print(f"SIM : {sim}")
|
||||
result_path = f"{gen_wav_dir}/_{eval_task}_results.jsonl"
|
||||
with open(result_path, "w") as f:
|
||||
for line in full_results:
|
||||
metrics.append(line[eval_task])
|
||||
f.write(json.dumps(line, ensure_ascii=False) + "\n")
|
||||
metric = round(np.mean(metrics), 5)
|
||||
f.write(f"\n{eval_task.upper()}: {metric}\n")
|
||||
|
||||
print(f"\nTotal {len(metrics)} samples")
|
||||
print(f"{eval_task.upper()}: {metric}")
|
||||
print(f"{eval_task.upper()} results saved to {result_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -19,25 +19,23 @@ def main():
|
||||
predictor = predictor.to(device)
|
||||
|
||||
audio_paths = list(Path(args.audio_dir).rglob(f"*.{args.ext}"))
|
||||
utmos_results = {}
|
||||
utmos_score = 0
|
||||
|
||||
for audio_path in tqdm(audio_paths, desc="Processing"):
|
||||
wav_name = audio_path.stem
|
||||
wav, sr = librosa.load(audio_path, sr=None, mono=True)
|
||||
wav_tensor = torch.from_numpy(wav).to(device).unsqueeze(0)
|
||||
score = predictor(wav_tensor, sr)
|
||||
utmos_results[str(wav_name)] = score.item()
|
||||
utmos_score += score.item()
|
||||
|
||||
avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0
|
||||
print(f"UTMOS: {avg_score}")
|
||||
|
||||
utmos_result_path = Path(args.audio_dir) / "utmos_results.json"
|
||||
utmos_result_path = Path(args.audio_dir) / "_utmos_results.jsonl"
|
||||
with open(utmos_result_path, "w", encoding="utf-8") as f:
|
||||
json.dump(utmos_results, f, ensure_ascii=False, indent=4)
|
||||
for audio_path in tqdm(audio_paths, desc="Processing"):
|
||||
wav, sr = librosa.load(audio_path, sr=None, mono=True)
|
||||
wav_tensor = torch.from_numpy(wav).to(device).unsqueeze(0)
|
||||
score = predictor(wav_tensor, sr)
|
||||
line = {}
|
||||
line["wav"], line["utmos"] = str(audio_path.stem), score.item()
|
||||
utmos_score += score.item()
|
||||
f.write(json.dumps(line, ensure_ascii=False) + "\n")
|
||||
avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0
|
||||
f.write(f"\nUTMOS: {avg_score:.4f}\n")
|
||||
|
||||
print(f"Results have been saved to {utmos_result_path}")
|
||||
print(f"UTMOS: {avg_score:.4f}")
|
||||
print(f"UTMOS results saved to {utmos_result_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -126,8 +126,13 @@ def get_inference_prompt(
|
||||
else:
|
||||
text_list = text
|
||||
|
||||
# to mel spectrogram
|
||||
ref_mel = mel_spectrogram(ref_audio)
|
||||
ref_mel = ref_mel.squeeze(0)
|
||||
|
||||
# Duration, mel frame length
|
||||
ref_mel_len = ref_audio.shape[-1] // hop_length
|
||||
ref_mel_len = ref_mel.shape[-1]
|
||||
|
||||
if use_truth_duration:
|
||||
gt_audio, gt_sr = torchaudio.load(gt_wav)
|
||||
if gt_sr != target_sample_rate:
|
||||
@@ -142,15 +147,11 @@ def get_inference_prompt(
|
||||
gen_text_len = len(gt_text.encode("utf-8"))
|
||||
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
|
||||
|
||||
# to mel spectrogram
|
||||
ref_mel = mel_spectrogram(ref_audio)
|
||||
ref_mel = ref_mel.squeeze(0)
|
||||
|
||||
# deal with batch
|
||||
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
|
||||
assert (
|
||||
min_tokens <= total_mel_len <= max_tokens
|
||||
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
|
||||
assert min_tokens <= total_mel_len <= max_tokens, (
|
||||
f"Audio {utt} has duration {total_mel_len * hop_length // target_sample_rate}s out of range [{min_secs}, {max_secs}]."
|
||||
)
|
||||
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
|
||||
|
||||
utts[bucket_i].append(utt)
|
||||
@@ -389,10 +390,10 @@ def run_sim(args):
|
||||
model = model.cuda(device)
|
||||
model.eval()
|
||||
|
||||
sims = []
|
||||
for wav1, wav2, truth in tqdm(test_set):
|
||||
wav1, sr1 = torchaudio.load(wav1)
|
||||
wav2, sr2 = torchaudio.load(wav2)
|
||||
sim_results = []
|
||||
for gen_wav, prompt_wav, truth in tqdm(test_set):
|
||||
wav1, sr1 = torchaudio.load(gen_wav)
|
||||
wav2, sr2 = torchaudio.load(prompt_wav)
|
||||
|
||||
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
|
||||
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
|
||||
@@ -408,6 +409,11 @@ def run_sim(args):
|
||||
|
||||
sim = F.cosine_similarity(emb1, emb2)[0].item()
|
||||
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
|
||||
sims.append(sim)
|
||||
sim_results.append(
|
||||
{
|
||||
"wav": Path(gen_wav).stem,
|
||||
"sim": sim,
|
||||
}
|
||||
)
|
||||
|
||||
return sims
|
||||
return sim_results
|
||||
|
||||
@@ -4,16 +4,17 @@ The pretrained model checkpoints can be reached at [🤗 Hugging Face](https://h
|
||||
|
||||
**More checkpoints with whole community efforts can be found in [SHARED.md](SHARED.md), supporting more languages.**
|
||||
|
||||
Currently support **30s for a single** generation, which is the **total length** including both prompt and output audio. However, you can provide `infer_cli` and `infer_gradio` with longer text, will automatically do chunk generation. Long reference audio will be **clip short to ~15s**.
|
||||
Currently support **30s for a single** generation, which is the **total length** (same logic if `fix_duration`) including both prompt and output audio. However, `infer_cli` and `infer_gradio` will automatically do chunk generation for longer text. Long reference audio will be **clip short to ~12s**.
|
||||
|
||||
To avoid possible inference failures, make sure you have seen through the following instructions.
|
||||
|
||||
- Use reference audio <15s and leave some silence (e.g. 1s) at the end. Otherwise there is a risk of truncating in the middle of word, leading to suboptimal generation.
|
||||
- Uppercased letters will be uttered letter by letter, so use lowercased letters for normal words.
|
||||
- Add some spaces (blank: " ") or punctuations (e.g. "," ".") to explicitly introduce some pauses.
|
||||
- Preprocess numbers to Chinese letters if you want to have them read in Chinese, otherwise in English.
|
||||
- If the generation output is blank (pure silence), check for ffmpeg installation (various tutorials online, blogs, videos, etc.).
|
||||
- Try turn off use_ema if using an early-stage finetuned checkpoint (which goes just few updates).
|
||||
- Use reference audio <12s and leave proper silence space (e.g. 1s) at the end. Otherwise there is a risk of truncating in the middle of word, leading to suboptimal generation.
|
||||
- <ins>Uppercased letters</ins> (best with form like K.F.C.) will be uttered letter by letter, and lowercased letters used for common words.
|
||||
- Add some spaces (blank: " ") or punctuations (e.g. "," ".") <ins>to explicitly introduce some pauses</ins>.
|
||||
- If English punctuation marks the end of a sentence, make sure there is a space " " after it. Otherwise not regarded as when chunk.
|
||||
- <ins>Preprocess numbers</ins> to Chinese letters if you want to have them read in Chinese, otherwise in English.
|
||||
- If the generation output is blank (pure silence), <ins>check for FFmpeg installation</ins>.
|
||||
- Try <ins>turn off `use_ema` if using an early-stage</ins> finetuned checkpoint (which goes just few updates).
|
||||
|
||||
|
||||
## Gradio App
|
||||
@@ -23,7 +24,7 @@ Currently supported features:
|
||||
- Basic TTS with Chunk Inference
|
||||
- Multi-Style / Multi-Speaker Generation
|
||||
- Voice Chat powered by Qwen2.5-3B-Instruct
|
||||
- [Custom inference with more language support](src/f5_tts/infer/SHARED.md)
|
||||
- [Custom inference with more language support](SHARED.md)
|
||||
|
||||
The cli command `f5-tts_infer-gradio` equals to `python src/f5_tts/infer/infer_gradio.py`, which launches a Gradio APP (web interface) for inference.
|
||||
|
||||
@@ -68,14 +69,16 @@ Basically you can inference with flags:
|
||||
```bash
|
||||
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
|
||||
f5-tts_infer-cli \
|
||||
--model "F5-TTS" \
|
||||
--model F5TTS_v1_Base \
|
||||
--ref_audio "ref_audio.wav" \
|
||||
--ref_text "The content, subtitle or transcription of reference audio." \
|
||||
--gen_text "Some text you want TTS model generate for you."
|
||||
|
||||
# Choose Vocoder
|
||||
f5-tts_infer-cli --vocoder_name bigvgan --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base_bigvgan/model_1250000.pt>
|
||||
f5-tts_infer-cli --vocoder_name vocos --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base/model_1200000.safetensors>
|
||||
# Use BigVGAN as vocoder. Currently only support F5TTS_Base.
|
||||
f5-tts_infer-cli --model F5TTS_Base --vocoder_name bigvgan --load_vocoder_from_local
|
||||
|
||||
# Use custom path checkpoint, e.g.
|
||||
f5-tts_infer-cli --ckpt_file ckpts/F5TTS_v1_Base/model_1250000.safetensors
|
||||
|
||||
# More instructions
|
||||
f5-tts_infer-cli --help
|
||||
@@ -90,8 +93,8 @@ f5-tts_infer-cli -c custom.toml
|
||||
For example, you can use `.toml` to pass in variables, refer to `src/f5_tts/infer/examples/basic/basic.toml`:
|
||||
|
||||
```toml
|
||||
# F5-TTS | E2-TTS
|
||||
model = "F5-TTS"
|
||||
# F5TTS_v1_Base | E2TTS_Base
|
||||
model = "F5TTS_v1_Base"
|
||||
ref_audio = "infer/examples/basic/basic_ref_en.wav"
|
||||
# If an empty "", transcribes the reference audio automatically.
|
||||
ref_text = "Some call me nature, others call me mother nature."
|
||||
@@ -105,8 +108,8 @@ output_dir = "tests"
|
||||
You can also leverage `.toml` file to do multi-style generation, refer to `src/f5_tts/infer/examples/multi/story.toml`.
|
||||
|
||||
```toml
|
||||
# F5-TTS | E2-TTS
|
||||
model = "F5-TTS"
|
||||
# F5TTS_v1_Base | E2TTS_Base
|
||||
model = "F5TTS_v1_Base"
|
||||
ref_audio = "infer/examples/multi/main.flac"
|
||||
# If an empty "", transcribes the reference audio automatically.
|
||||
ref_text = ""
|
||||
@@ -126,6 +129,44 @@ ref_text = ""
|
||||
```
|
||||
You should mark the voice with `[main]` `[town]` `[country]` whenever you want to change voice, refer to `src/f5_tts/infer/examples/multi/story.txt`.
|
||||
|
||||
## API Usage
|
||||
|
||||
```python
|
||||
from importlib.resources import files
|
||||
from f5_tts.api import F5TTS
|
||||
|
||||
f5tts = F5TTS()
|
||||
wav, sr, spec = f5tts.infer(
|
||||
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
|
||||
ref_text="some call me nature, others call me mother nature.",
|
||||
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
||||
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
|
||||
file_spec=str(files("f5_tts").joinpath("../../tests/api_out.png")),
|
||||
seed=None,
|
||||
)
|
||||
```
|
||||
Check [api.py](../api.py) for more details.
|
||||
|
||||
## TensorRT-LLM Deployment
|
||||
|
||||
See [detailed instructions](../runtime/triton_trtllm/README.md) for more information.
|
||||
|
||||
## Socket Real-time Service
|
||||
|
||||
Real-time voice output with chunk stream:
|
||||
|
||||
```bash
|
||||
# Start socket server
|
||||
python src/f5_tts/socket_server.py
|
||||
|
||||
# If PyAudio not installed
|
||||
sudo apt-get install portaudio19-dev
|
||||
pip install pyaudio
|
||||
|
||||
# Communicate with socket client
|
||||
python src/f5_tts/socket_client.py
|
||||
```
|
||||
|
||||
## Speech Editing
|
||||
|
||||
To test speech editing capabilities, use the following command:
|
||||
@@ -134,86 +175,3 @@ To test speech editing capabilities, use the following command:
|
||||
python src/f5_tts/infer/speech_edit.py
|
||||
```
|
||||
|
||||
## Socket Realtime Client
|
||||
|
||||
To communicate with socket server you need to run
|
||||
```bash
|
||||
python src/f5_tts/socket_server.py
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Then create client to communicate</summary>
|
||||
|
||||
```bash
|
||||
# If PyAudio not installed
|
||||
sudo apt-get install portaudio19-dev
|
||||
pip install pyaudio
|
||||
```
|
||||
|
||||
``` python
|
||||
# Create the socket_client.py
|
||||
import socket
|
||||
import asyncio
|
||||
import pyaudio
|
||||
import numpy as np
|
||||
import logging
|
||||
import time
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def listen_to_F5TTS(text, server_ip="localhost", server_port=9998):
|
||||
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
await asyncio.get_event_loop().run_in_executor(None, client_socket.connect, (server_ip, int(server_port)))
|
||||
|
||||
start_time = time.time()
|
||||
first_chunk_time = None
|
||||
|
||||
async def play_audio_stream():
|
||||
nonlocal first_chunk_time
|
||||
p = pyaudio.PyAudio()
|
||||
stream = p.open(format=pyaudio.paFloat32, channels=1, rate=24000, output=True, frames_per_buffer=2048)
|
||||
|
||||
try:
|
||||
while True:
|
||||
data = await asyncio.get_event_loop().run_in_executor(None, client_socket.recv, 8192)
|
||||
if not data:
|
||||
break
|
||||
if data == b"END":
|
||||
logger.info("End of audio received.")
|
||||
break
|
||||
|
||||
audio_array = np.frombuffer(data, dtype=np.float32)
|
||||
stream.write(audio_array.tobytes())
|
||||
|
||||
if first_chunk_time is None:
|
||||
first_chunk_time = time.time()
|
||||
|
||||
finally:
|
||||
stream.stop_stream()
|
||||
stream.close()
|
||||
p.terminate()
|
||||
|
||||
logger.info(f"Total time taken: {time.time() - start_time:.4f} seconds")
|
||||
|
||||
try:
|
||||
data_to_send = f"{text}".encode("utf-8")
|
||||
await asyncio.get_event_loop().run_in_executor(None, client_socket.sendall, data_to_send)
|
||||
await play_audio_stream()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in listen_to_F5TTS: {e}")
|
||||
|
||||
finally:
|
||||
client_socket.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
text_to_send = "As a Reader assistant, I'm familiar with new technology. which are key to its improved performance in terms of both training speed and inference efficiency. Let's break down the components"
|
||||
|
||||
asyncio.run(listen_to_F5TTS(text_to_send))
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
@@ -16,12 +16,14 @@
|
||||
<!-- omit in toc -->
|
||||
### Supported Languages
|
||||
- [Multilingual](#multilingual)
|
||||
- [F5-TTS Base @ zh \& en @ F5-TTS](#f5-tts-base--zh--en--f5-tts)
|
||||
- [F5-TTS v1 v0 Base @ zh \& en @ F5-TTS](#f5-tts-v1-v0-base--zh--en--f5-tts)
|
||||
- [English](#english)
|
||||
- [Finnish](#finnish)
|
||||
- [F5-TTS Base @ fi @ AsmoKoskinen](#f5-tts-base--fi--asmokoskinen)
|
||||
- [French](#french)
|
||||
- [F5-TTS Base @ fr @ RASPIAUDIO](#f5-tts-base--fr--raspiaudio)
|
||||
- [German](#german)
|
||||
- [F5-TTS Base @ de @ hvoss-techfak](#f5-tts-base--de--hvoss-techfak)
|
||||
- [Hindi](#hindi)
|
||||
- [F5-TTS Small @ hi @ SPRINGLab](#f5-tts-small--hi--springlab)
|
||||
- [Italian](#italian)
|
||||
@@ -37,7 +39,18 @@
|
||||
|
||||
## Multilingual
|
||||
|
||||
#### F5-TTS Base @ zh & en @ F5-TTS
|
||||
#### F5-TTS v1 v0 Base @ zh & en @ F5-TTS
|
||||
|Model|🤗Hugging Face|Data (Hours)|Model License|
|
||||
|:---:|:------------:|:-----------:|:-------------:|
|
||||
|F5-TTS v1 Base|[ckpt & vocab](https://huggingface.co/SWivid/F5-TTS/tree/main/F5TTS_v1_Base)|[Emilia 95K zh&en](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07)|cc-by-nc-4.0|
|
||||
|
||||
```bash
|
||||
Model: hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors
|
||||
# A Variant Model: hf://SWivid/F5-TTS/F5TTS_v1_Base_no_zero_init/model_1250000.safetensors
|
||||
Vocab: hf://SWivid/F5-TTS/F5TTS_v1_Base/vocab.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
||||
```
|
||||
|
||||
|Model|🤗Hugging Face|Data (Hours)|Model License|
|
||||
|:---:|:------------:|:-----------:|:-------------:|
|
||||
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/SWivid/F5-TTS/tree/main/F5TTS_Base)|[Emilia 95K zh&en](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07)|cc-by-nc-4.0|
|
||||
@@ -45,7 +58,7 @@
|
||||
```bash
|
||||
Model: hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors
|
||||
Vocab: hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "text_mask_padding": False, "conv_layers": 4, "pe_attn_head": 1}
|
||||
```
|
||||
|
||||
*Other infos, e.g. Author info, Github repo, Link to some sampled results, Usage instruction, Tutorial (Blog, Video, etc.) ...*
|
||||
@@ -64,7 +77,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
||||
```bash
|
||||
Model: hf://AsmoKoskinen/F5-TTS_Finnish_Model/model_common_voice_fi_vox_populi_fi_20241206.safetensors
|
||||
Vocab: hf://AsmoKoskinen/F5-TTS_Finnish_Model/vocab.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "text_mask_padding": False, "conv_layers": 4, "pe_attn_head": 1}
|
||||
```
|
||||
|
||||
|
||||
@@ -78,7 +91,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
||||
```bash
|
||||
Model: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/model_last_reduced.pt
|
||||
Vocab: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/vocab.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "text_mask_padding": False, "conv_layers": 4, "pe_attn_head": 1}
|
||||
```
|
||||
|
||||
- [Online Inference with Hugging Face Space](https://huggingface.co/spaces/RASPIAUDIO/f5-tts_french).
|
||||
@@ -86,6 +99,22 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
||||
- [Discussion about this training can be found here](https://github.com/SWivid/F5-TTS/issues/434).
|
||||
|
||||
|
||||
## German
|
||||
|
||||
#### F5-TTS Base @ de @ hvoss-techfak
|
||||
|Model|🤗Hugging Face|Data (Hours)|Model License|
|
||||
|:---:|:------------:|:-----------:|:-------------:|
|
||||
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/hvoss-techfak/F5-TTS-German)|[Mozilla Common Voice 19.0](https://commonvoice.mozilla.org/en/datasets) & 800 hours Crowdsourced |cc-by-nc-4.0|
|
||||
|
||||
```bash
|
||||
Model: hf://hvoss-techfak/F5-TTS-German/model_f5tts_german.pt
|
||||
Vocab: hf://hvoss-techfak/F5-TTS-German/vocab.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "text_mask_padding": False, "conv_layers": 4, "pe_attn_head": 1}
|
||||
```
|
||||
|
||||
- Finetuned by [@hvoss-techfak](https://github.com/hvoss-techfak)
|
||||
|
||||
|
||||
## Hindi
|
||||
|
||||
#### F5-TTS Small @ hi @ SPRINGLab
|
||||
@@ -96,7 +125,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
||||
```bash
|
||||
Model: hf://SPRINGLab/F5-Hindi-24KHz/model_2500000.safetensors
|
||||
Vocab: hf://SPRINGLab/F5-Hindi-24KHz/vocab.txt
|
||||
Config: {"dim": 768, "depth": 18, "heads": 12, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
||||
Config: {"dim": 768, "depth": 18, "heads": 12, "ff_mult": 2, "text_dim": 512, "text_mask_padding": False, "conv_layers": 4, "pe_attn_head": 1}
|
||||
```
|
||||
|
||||
- Authors: SPRING Lab, Indian Institute of Technology, Madras
|
||||
@@ -113,7 +142,7 @@ Config: {"dim": 768, "depth": 18, "heads": 12, "ff_mult": 2, "text_dim": 512, "c
|
||||
```bash
|
||||
Model: hf://alien79/F5-TTS-italian/model_159600.safetensors
|
||||
Vocab: hf://alien79/F5-TTS-italian/vocab.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "text_mask_padding": False, "conv_layers": 4, "pe_attn_head": 1}
|
||||
```
|
||||
|
||||
- Trained by [Mithril Man](https://github.com/MithrilMan)
|
||||
@@ -126,12 +155,12 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
||||
#### F5-TTS Base @ ja @ Jmica
|
||||
|Model|🤗Hugging Face|Data (Hours)|Model License|
|
||||
|:---:|:------------:|:-----------:|:-------------:|
|
||||
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/Jmica/F5TTS/tree/main/JA_25498980)|[Emilia 1.7k JA](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07) & [Galgame Dataset 5.4k](https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset)|cc-by-nc-4.0|
|
||||
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/Jmica/F5TTS/tree/main/JA_21999120)|[Emilia 1.7k JA](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07) & [Galgame Dataset 5.4k](https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset)|cc-by-nc-4.0|
|
||||
|
||||
```bash
|
||||
Model: hf://Jmica/F5TTS/JA_25498980/model_25498980.pt
|
||||
Vocab: hf://Jmica/F5TTS/JA_25498980/vocab_updated.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
||||
Model: hf://Jmica/F5TTS/JA_21999120/model_21999120.pt
|
||||
Vocab: hf://Jmica/F5TTS/JA_21999120/vocab_japanese.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "text_mask_padding": False, "conv_layers": 4, "pe_attn_head": 1}
|
||||
```
|
||||
|
||||
|
||||
@@ -148,7 +177,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
||||
```bash
|
||||
Model: hf://hotstone228/F5-TTS-Russian/model_last.safetensors
|
||||
Vocab: hf://hotstone228/F5-TTS-Russian/vocab.txt
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
||||
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "text_mask_padding": False, "conv_layers": 4, "pe_attn_head": 1}
|
||||
```
|
||||
- Finetuned by [HotDro4illa](https://github.com/HotDro4illa)
|
||||
- Any improvements are welcome
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# F5-TTS | E2-TTS
|
||||
model = "F5-TTS"
|
||||
# F5TTS_v1_Base | E2TTS_Base
|
||||
model = "F5TTS_v1_Base"
|
||||
ref_audio = "infer/examples/basic/basic_ref_en.wav"
|
||||
# If an empty "", transcribes the reference audio automatically.
|
||||
ref_text = "Some call me nature, others call me mother nature."
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# F5-TTS | E2-TTS
|
||||
model = "F5-TTS"
|
||||
# F5TTS_v1_Base | E2TTS_Base
|
||||
model = "F5TTS_v1_Base"
|
||||
ref_audio = "infer/examples/multi/main.flac"
|
||||
# If an empty "", transcribes the reference audio automatically.
|
||||
ref_text = ""
|
||||
@@ -13,8 +13,8 @@ output_file = "infer_cli_story.wav"
|
||||
[voices.town]
|
||||
ref_audio = "infer/examples/multi/town.flac"
|
||||
ref_text = ""
|
||||
speed = 0.8 # will ignore global speed
|
||||
|
||||
[voices.country]
|
||||
ref_audio = "infer/examples/multi/country.flac"
|
||||
ref_text = ""
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
A Town Mouse and a Country Mouse were acquaintances, and the Country Mouse one day invited his friend to come and see him at his home in the fields. The Town Mouse came, and they sat down to a dinner of barleycorns and roots, the latter of which had a distinctly earthy flavour. The fare was not much to the taste of the guest, and presently he broke out with [town] “My poor dear friend, you live here no better than the ants. Now, you should just see how I fare! My larder is a regular horn of plenty. You must come and stay with me, and I promise you you shall live on the fat of the land.” [main] So when he returned to town he took the Country Mouse with him, and showed him into a larder containing flour and oatmeal and figs and honey and dates. The Country Mouse had never seen anything like it, and sat down to enjoy the luxuries his friend provided: but before they had well begun, the door of the larder opened and someone came in. The two Mice scampered off and hid themselves in a narrow and exceedingly uncomfortable hole. Presently, when all was quiet, they ventured out again; but someone else came in, and off they scuttled again. This was too much for the visitor. [country] “Goodbye,” [main] said he, [country] “I’m off. You live in the lap of luxury, I can see, but you are surrounded by dangers; whereas at home I can enjoy my simple dinner of roots and corn in peace.”
|
||||
A Town Mouse and a Country Mouse were acquaintances, and the Country Mouse one day invited his friend to come and see him at his home in the fields. The Town Mouse came, and they sat down to a dinner of barleycorns and roots, the latter of which had a distinctly earthy flavour. The fare was not much to the taste of the guest, and presently he broke out with [town] "My poor dear friend, you live here no better than the ants! Now, you should just see how I fare! My larder is a regular horn of plenty. You must come and stay with me, and I promise you you shall live on the fat of the land." [main] So when he returned to town he took the Country Mouse with him, and showed him into a larder containing flour and oatmeal and figs and honey and dates. The Country Mouse had never seen anything like it, and sat down to enjoy the luxuries his friend provided: but before they had well begun, the door of the larder opened and someone came in. The two Mice scampered off and hid themselves in a narrow and exceedingly uncomfortable hole. Presently, when all was quiet, they ventured out again; but someone else came in, and off they scuttled again. This was too much for the visitor. [country] "Goodbye," [main] said he, [country] "I'm off. You live in the lap of luxury, I can see, but you are surrounded by dangers; whereas at home I can enjoy my simple dinner of roots and corn in peace."
|
||||
@@ -10,24 +10,26 @@ import numpy as np
|
||||
import soundfile as sf
|
||||
import tomli
|
||||
from cached_path import cached_path
|
||||
from hydra.utils import get_class
|
||||
from omegaconf import OmegaConf
|
||||
from unidecode import unidecode
|
||||
|
||||
from f5_tts.infer.utils_infer import (
|
||||
mel_spec_type,
|
||||
target_rms,
|
||||
cross_fade_duration,
|
||||
nfe_step,
|
||||
cfg_strength,
|
||||
sway_sampling_coef,
|
||||
speed,
|
||||
cross_fade_duration,
|
||||
device,
|
||||
fix_duration,
|
||||
infer_process,
|
||||
load_model,
|
||||
load_vocoder,
|
||||
mel_spec_type,
|
||||
nfe_step,
|
||||
preprocess_ref_audio_text,
|
||||
remove_silence_for_generated_wav,
|
||||
speed,
|
||||
sway_sampling_coef,
|
||||
target_rms,
|
||||
)
|
||||
from f5_tts.model import DiT, UNetT
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
@@ -50,7 +52,7 @@ parser.add_argument(
|
||||
"-m",
|
||||
"--model",
|
||||
type=str,
|
||||
help="The model name: F5-TTS | E2-TTS",
|
||||
help="The model name: F5TTS_v1_Base | F5TTS_Base | E2TTS_Base | etc.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-mc",
|
||||
@@ -111,6 +113,11 @@ parser.add_argument(
|
||||
action="store_true",
|
||||
help="To save each audio chunks during inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no_legacy_text",
|
||||
action="store_false",
|
||||
help="Not to use lossy ASCII transliterations of unicode text in saved file names.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--remove_silence",
|
||||
action="store_true",
|
||||
@@ -162,6 +169,11 @@ parser.add_argument(
|
||||
type=float,
|
||||
help=f"Fix the total duration (ref and gen audios) in seconds, default {fix_duration}",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
help="Specify the device to run on",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
@@ -172,8 +184,7 @@ config = tomli.load(open(args.config, "rb"))
|
||||
|
||||
# command-line interface parameters
|
||||
|
||||
model = args.model or config.get("model", "F5-TTS")
|
||||
model_cfg = args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath("configs/F5TTS_Base_train.yaml")))
|
||||
model = args.model or config.get("model", "F5TTS_v1_Base")
|
||||
ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
|
||||
vocab_file = args.vocab_file or config.get("vocab_file", "")
|
||||
|
||||
@@ -192,6 +203,12 @@ output_file = args.output_file or config.get(
|
||||
)
|
||||
|
||||
save_chunk = args.save_chunk or config.get("save_chunk", False)
|
||||
use_legacy_text = args.no_legacy_text or config.get("no_legacy_text", False) # no_legacy_text is a store_false arg
|
||||
if save_chunk and use_legacy_text:
|
||||
print(
|
||||
"\nWarning to --save_chunk: lossy ASCII transliterations of unicode text for legacy (.wav) file names, --no_legacy_text to disable.\n"
|
||||
)
|
||||
|
||||
remove_silence = args.remove_silence or config.get("remove_silence", False)
|
||||
load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocoder_from_local", False)
|
||||
|
||||
@@ -203,6 +220,7 @@ cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
|
||||
sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
|
||||
speed = args.speed or config.get("speed", speed)
|
||||
fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
|
||||
device = args.device or config.get("device", device)
|
||||
|
||||
|
||||
# patches for pip pkg user
|
||||
@@ -240,41 +258,42 @@ if vocoder_name == "vocos":
|
||||
elif vocoder_name == "bigvgan":
|
||||
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
|
||||
|
||||
vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path)
|
||||
vocoder = load_vocoder(
|
||||
vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path, device=device
|
||||
)
|
||||
|
||||
|
||||
# load TTS model
|
||||
|
||||
if model == "F5-TTS":
|
||||
model_cls = DiT
|
||||
model_cfg = OmegaConf.load(model_cfg).model.arch
|
||||
if not ckpt_file: # path not specified, download from repo
|
||||
if vocoder_name == "vocos":
|
||||
repo_name = "F5-TTS"
|
||||
exp_name = "F5TTS_Base"
|
||||
ckpt_step = 1200000
|
||||
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
||||
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
||||
elif vocoder_name == "bigvgan":
|
||||
repo_name = "F5-TTS"
|
||||
exp_name = "F5TTS_Base_bigvgan"
|
||||
ckpt_step = 1250000
|
||||
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
|
||||
model_cfg = OmegaConf.load(
|
||||
args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
|
||||
)
|
||||
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
|
||||
model_arc = model_cfg.model.arch
|
||||
|
||||
elif model == "E2-TTS":
|
||||
assert args.model_cfg is None, "E2-TTS does not support custom model_cfg yet"
|
||||
assert vocoder_name == "vocos", "E2-TTS only supports vocoder vocos yet"
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
if not ckpt_file: # path not specified, download from repo
|
||||
repo_name = "E2-TTS"
|
||||
exp_name = "E2TTS_Base"
|
||||
repo_name, ckpt_step, ckpt_type = "F5-TTS", 1250000, "safetensors"
|
||||
|
||||
if model != "F5TTS_Base":
|
||||
assert vocoder_name == model_cfg.model.mel_spec.mel_spec_type
|
||||
|
||||
# override for previous models
|
||||
if model == "F5TTS_Base":
|
||||
if vocoder_name == "vocos":
|
||||
ckpt_step = 1200000
|
||||
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
||||
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
||||
elif vocoder_name == "bigvgan":
|
||||
model = "F5TTS_Base_bigvgan"
|
||||
ckpt_type = "pt"
|
||||
elif model == "E2TTS_Base":
|
||||
repo_name = "E2-TTS"
|
||||
ckpt_step = 1200000
|
||||
|
||||
if not ckpt_file:
|
||||
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}"))
|
||||
|
||||
print(f"Using {model}...")
|
||||
ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
|
||||
ema_model = load_model(
|
||||
model_cls, model_arc, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file, device=device
|
||||
)
|
||||
|
||||
|
||||
# inference process
|
||||
@@ -314,9 +333,10 @@ def main():
|
||||
text = re.sub(reg2, "", text)
|
||||
ref_audio_ = voices[voice]["ref_audio"]
|
||||
ref_text_ = voices[voice]["ref_text"]
|
||||
local_speed = voices[voice].get("speed", speed)
|
||||
gen_text_ = text.strip()
|
||||
print(f"Voice: {voice}")
|
||||
audio_segment, final_sample_rate, spectragram = infer_process(
|
||||
audio_segment, final_sample_rate, spectrogram = infer_process(
|
||||
ref_audio_,
|
||||
ref_text_,
|
||||
gen_text_,
|
||||
@@ -328,16 +348,19 @@ def main():
|
||||
nfe_step=nfe_step,
|
||||
cfg_strength=cfg_strength,
|
||||
sway_sampling_coef=sway_sampling_coef,
|
||||
speed=speed,
|
||||
speed=local_speed,
|
||||
fix_duration=fix_duration,
|
||||
device=device,
|
||||
)
|
||||
generated_audio_segments.append(audio_segment)
|
||||
|
||||
if save_chunk:
|
||||
if len(gen_text_) > 200:
|
||||
gen_text_ = gen_text_[:200] + " ... "
|
||||
if use_legacy_text:
|
||||
gen_text_ = unidecode(gen_text_)
|
||||
sf.write(
|
||||
os.path.join(output_chunk_dir, f"{len(generated_audio_segments)-1}_{gen_text_}.wav"),
|
||||
os.path.join(output_chunk_dir, f"{len(generated_audio_segments) - 1}_{gen_text_}.wav"),
|
||||
audio_segment,
|
||||
final_sample_rate,
|
||||
)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,15 +1,22 @@
|
||||
import os
|
||||
|
||||
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
|
||||
|
||||
from importlib.resources import files
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from cached_path import cached_path
|
||||
from hydra.utils import get_class
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
|
||||
from f5_tts.model import CFM, DiT, UNetT
|
||||
from f5_tts.model import CFM
|
||||
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
|
||||
|
||||
|
||||
device = (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
@@ -21,44 +28,41 @@ device = (
|
||||
)
|
||||
|
||||
|
||||
# --------------------- Dataset Settings -------------------- #
|
||||
|
||||
target_sample_rate = 24000
|
||||
n_mel_channels = 100
|
||||
hop_length = 256
|
||||
win_length = 1024
|
||||
n_fft = 1024
|
||||
mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
|
||||
target_rms = 0.1
|
||||
|
||||
tokenizer = "pinyin"
|
||||
dataset_name = "Emilia_ZH_EN"
|
||||
|
||||
|
||||
# ---------------------- infer setting ---------------------- #
|
||||
|
||||
seed = None # int | None
|
||||
|
||||
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
||||
ckpt_step = 1200000
|
||||
exp_name = "F5TTS_v1_Base" # F5TTS_v1_Base | E2TTS_Base
|
||||
ckpt_step = 1250000
|
||||
|
||||
nfe_step = 32 # 16, 32
|
||||
cfg_strength = 2.0
|
||||
ode_method = "euler" # euler | midpoint
|
||||
sway_sampling_coef = -1.0
|
||||
speed = 1.0
|
||||
target_rms = 0.1
|
||||
|
||||
if exp_name == "F5TTS_Base":
|
||||
model_cls = DiT
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
|
||||
elif exp_name == "E2TTS_Base":
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{exp_name}.yaml")))
|
||||
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
|
||||
model_arc = model_cfg.model.arch
|
||||
|
||||
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
||||
dataset_name = model_cfg.datasets.name
|
||||
tokenizer = model_cfg.model.tokenizer
|
||||
|
||||
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
|
||||
target_sample_rate = model_cfg.model.mel_spec.target_sample_rate
|
||||
n_mel_channels = model_cfg.model.mel_spec.n_mel_channels
|
||||
hop_length = model_cfg.model.mel_spec.hop_length
|
||||
win_length = model_cfg.model.mel_spec.win_length
|
||||
n_fft = model_cfg.model.mel_spec.n_fft
|
||||
|
||||
|
||||
# ckpt_path = str(files("f5_tts").joinpath("../../")) + f"/ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
||||
ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.safetensors"))
|
||||
output_dir = "tests"
|
||||
|
||||
|
||||
# [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
|
||||
# pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
|
||||
# [write the origin_text into a file, e.g. tests/test_edit.txt]
|
||||
@@ -67,7 +71,7 @@ output_dir = "tests"
|
||||
# [--language "zho" for Chinese, "eng" for English]
|
||||
# [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
|
||||
|
||||
audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_en.wav"
|
||||
audio_to_edit = str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav"))
|
||||
origin_text = "Some call me nature, others call me mother nature."
|
||||
target_text = "Some call me optimist, others call me realist."
|
||||
parts_to_edit = [
|
||||
@@ -106,7 +110,7 @@ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
||||
|
||||
# Model
|
||||
model = CFM(
|
||||
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
||||
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
||||
mel_spec_kwargs=dict(
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
@@ -152,7 +156,7 @@ for part in parts_to_edit:
|
||||
dim=-1,
|
||||
)
|
||||
offset = end * target_sample_rate
|
||||
# audio = torch.cat((audio_, audio[:, round(offset):]), dim = -1)
|
||||
audio = torch.cat((audio_, audio[:, round(offset) :]), dim=-1)
|
||||
edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value=True)
|
||||
audio = audio.to(device)
|
||||
edit_mask = edit_mask.to(device)
|
||||
|
||||
@@ -4,6 +4,7 @@ import os
|
||||
import sys
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
|
||||
sys.path.append(f"{os.path.dirname(os.path.abspath(__file__))}/../../third_party/BigVGAN/")
|
||||
|
||||
@@ -14,6 +15,7 @@ from importlib.resources import files
|
||||
|
||||
import matplotlib
|
||||
|
||||
|
||||
matplotlib.use("Agg")
|
||||
|
||||
import matplotlib.pylab as plt
|
||||
@@ -21,18 +23,17 @@ import numpy as np
|
||||
import torch
|
||||
import torchaudio
|
||||
import tqdm
|
||||
from huggingface_hub import snapshot_download, hf_hub_download
|
||||
from huggingface_hub import hf_hub_download
|
||||
from pydub import AudioSegment, silence
|
||||
from transformers import pipeline
|
||||
from vocos import Vocos
|
||||
|
||||
from f5_tts.model import CFM
|
||||
from f5_tts.model.utils import (
|
||||
get_tokenizer,
|
||||
convert_char_to_pinyin,
|
||||
)
|
||||
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
|
||||
|
||||
|
||||
_ref_audio_cache = {}
|
||||
_ref_text_cache = {}
|
||||
|
||||
device = (
|
||||
"cuda"
|
||||
@@ -44,6 +45,8 @@ device = (
|
||||
else "cpu"
|
||||
)
|
||||
|
||||
tempfile_kwargs = {"delete_on_close": False} if sys.version_info >= (3, 12) else {"delete": False}
|
||||
|
||||
# -----------------------------------------
|
||||
|
||||
target_sample_rate = 24000
|
||||
@@ -128,11 +131,12 @@ def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=dev
|
||||
except ImportError:
|
||||
print("You need to follow the README to init submodule and change the BigVGAN source code.")
|
||||
if is_local:
|
||||
"""download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
|
||||
# download generator from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main
|
||||
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
|
||||
else:
|
||||
local_path = snapshot_download(repo_id="nvidia/bigvgan_v2_24khz_100band_256x", cache_dir=hf_cache_dir)
|
||||
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
|
||||
vocoder = bigvgan.BigVGAN.from_pretrained(
|
||||
"nvidia/bigvgan_v2_24khz_100band_256x", use_cuda_kernel=False, cache_dir=hf_cache_dir
|
||||
)
|
||||
|
||||
vocoder.remove_weight_norm()
|
||||
vocoder = vocoder.eval().to(device)
|
||||
@@ -149,7 +153,7 @@ def initialize_asr_pipeline(device: str = device, dtype=None):
|
||||
dtype = (
|
||||
torch.float16
|
||||
if "cuda" in device
|
||||
and torch.cuda.get_device_properties(device).major >= 6
|
||||
and torch.cuda.get_device_properties(device).major >= 7
|
||||
and not torch.cuda.get_device_name().endswith("[ZLUDA]")
|
||||
else torch.float32
|
||||
)
|
||||
@@ -186,7 +190,7 @@ def load_checkpoint(model, ckpt_path, device: str, dtype=None, use_ema=True):
|
||||
dtype = (
|
||||
torch.float16
|
||||
if "cuda" in device
|
||||
and torch.cuda.get_device_properties(device).major >= 6
|
||||
and torch.cuda.get_device_properties(device).major >= 7
|
||||
and not torch.cuda.get_device_name().endswith("[ZLUDA]")
|
||||
else torch.float32
|
||||
)
|
||||
@@ -289,62 +293,74 @@ def remove_silence_edges(audio, silence_threshold=-42):
|
||||
# preprocess reference audio and text
|
||||
|
||||
|
||||
def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_info=print, device=device):
|
||||
def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print):
|
||||
show_info("Converting audio...")
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
||||
aseg = AudioSegment.from_file(ref_audio_orig)
|
||||
|
||||
if clip_short:
|
||||
# 1. try to find long silence for clipping
|
||||
non_silent_segs = silence.split_on_silence(
|
||||
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10
|
||||
)
|
||||
non_silent_wave = AudioSegment.silent(duration=0)
|
||||
for non_silent_seg in non_silent_segs:
|
||||
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
|
||||
show_info("Audio is over 15s, clipping short. (1)")
|
||||
break
|
||||
non_silent_wave += non_silent_seg
|
||||
|
||||
# 2. try to find short silence for clipping if 1. failed
|
||||
if len(non_silent_wave) > 15000:
|
||||
non_silent_segs = silence.split_on_silence(
|
||||
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
|
||||
)
|
||||
non_silent_wave = AudioSegment.silent(duration=0)
|
||||
for non_silent_seg in non_silent_segs:
|
||||
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
|
||||
show_info("Audio is over 15s, clipping short. (2)")
|
||||
break
|
||||
non_silent_wave += non_silent_seg
|
||||
|
||||
aseg = non_silent_wave
|
||||
|
||||
# 3. if no proper silence found for clipping
|
||||
if len(aseg) > 15000:
|
||||
aseg = aseg[:15000]
|
||||
show_info("Audio is over 15s, clipping short. (3)")
|
||||
|
||||
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
|
||||
aseg.export(f.name, format="wav")
|
||||
ref_audio = f.name
|
||||
|
||||
# Compute a hash of the reference audio file
|
||||
with open(ref_audio, "rb") as audio_file:
|
||||
with open(ref_audio_orig, "rb") as audio_file:
|
||||
audio_data = audio_file.read()
|
||||
audio_hash = hashlib.md5(audio_data).hexdigest()
|
||||
|
||||
global _ref_audio_cache
|
||||
|
||||
if audio_hash in _ref_audio_cache:
|
||||
show_info("Using cached preprocessed reference audio...")
|
||||
ref_audio = _ref_audio_cache[audio_hash]
|
||||
|
||||
else: # first pass, do preprocess
|
||||
with tempfile.NamedTemporaryFile(suffix=".wav", **tempfile_kwargs) as f:
|
||||
temp_path = f.name
|
||||
|
||||
aseg = AudioSegment.from_file(ref_audio_orig)
|
||||
|
||||
# 1. try to find long silence for clipping
|
||||
non_silent_segs = silence.split_on_silence(
|
||||
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10
|
||||
)
|
||||
non_silent_wave = AudioSegment.silent(duration=0)
|
||||
for non_silent_seg in non_silent_segs:
|
||||
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
|
||||
show_info("Audio is over 12s, clipping short. (1)")
|
||||
break
|
||||
non_silent_wave += non_silent_seg
|
||||
|
||||
# 2. try to find short silence for clipping if 1. failed
|
||||
if len(non_silent_wave) > 12000:
|
||||
non_silent_segs = silence.split_on_silence(
|
||||
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
|
||||
)
|
||||
non_silent_wave = AudioSegment.silent(duration=0)
|
||||
for non_silent_seg in non_silent_segs:
|
||||
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 12000:
|
||||
show_info("Audio is over 12s, clipping short. (2)")
|
||||
break
|
||||
non_silent_wave += non_silent_seg
|
||||
|
||||
aseg = non_silent_wave
|
||||
|
||||
# 3. if no proper silence found for clipping
|
||||
if len(aseg) > 12000:
|
||||
aseg = aseg[:12000]
|
||||
show_info("Audio is over 12s, clipping short. (3)")
|
||||
|
||||
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
|
||||
aseg.export(temp_path, format="wav")
|
||||
ref_audio = temp_path
|
||||
|
||||
# Cache the processed reference audio
|
||||
_ref_audio_cache[audio_hash] = ref_audio
|
||||
|
||||
if not ref_text.strip():
|
||||
global _ref_audio_cache
|
||||
if audio_hash in _ref_audio_cache:
|
||||
global _ref_text_cache
|
||||
if audio_hash in _ref_text_cache:
|
||||
# Use cached asr transcription
|
||||
show_info("Using cached reference text...")
|
||||
ref_text = _ref_audio_cache[audio_hash]
|
||||
ref_text = _ref_text_cache[audio_hash]
|
||||
else:
|
||||
show_info("No reference text provided, transcribing reference audio...")
|
||||
ref_text = transcribe(ref_audio)
|
||||
# Cache the transcribed text (not caching custom ref_text, enabling users to do manual tweak)
|
||||
_ref_audio_cache[audio_hash] = ref_text
|
||||
_ref_text_cache[audio_hash] = ref_text
|
||||
else:
|
||||
show_info("Using custom reference text...")
|
||||
|
||||
@@ -383,7 +399,7 @@ def infer_process(
|
||||
):
|
||||
# Split the input text into batches
|
||||
audio, sr = torchaudio.load(ref_audio)
|
||||
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
|
||||
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (22 - audio.shape[-1] / sr) * speed)
|
||||
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
|
||||
for i, gen_text in enumerate(gen_text_batches):
|
||||
print(f"gen_text {i}", gen_text)
|
||||
@@ -479,14 +495,15 @@ def infer_batch_process(
|
||||
cfg_strength=cfg_strength,
|
||||
sway_sampling_coef=sway_sampling_coef,
|
||||
)
|
||||
del _
|
||||
|
||||
generated = generated.to(torch.float32)
|
||||
generated = generated.to(torch.float32) # generated mel spectrogram
|
||||
generated = generated[:, ref_audio_len:, :]
|
||||
generated_mel_spec = generated.permute(0, 2, 1)
|
||||
generated = generated.permute(0, 2, 1)
|
||||
if mel_spec_type == "vocos":
|
||||
generated_wave = vocoder.decode(generated_mel_spec)
|
||||
generated_wave = vocoder.decode(generated)
|
||||
elif mel_spec_type == "bigvgan":
|
||||
generated_wave = vocoder(generated_mel_spec)
|
||||
generated_wave = vocoder(generated)
|
||||
if rms < target_rms:
|
||||
generated_wave = generated_wave * rms / target_rms
|
||||
|
||||
@@ -497,7 +514,9 @@ def infer_batch_process(
|
||||
for j in range(0, len(generated_wave), chunk_size):
|
||||
yield generated_wave[j : j + chunk_size], target_sample_rate
|
||||
else:
|
||||
yield generated_wave, generated_mel_spec[0].cpu().numpy()
|
||||
generated_cpu = generated[0].cpu().numpy()
|
||||
del generated
|
||||
yield generated_wave, generated_cpu
|
||||
|
||||
if streaming:
|
||||
for gen_text in progress.tqdm(gen_text_batches) if progress is not None else gen_text_batches:
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
from f5_tts.model.cfm import CFM
|
||||
|
||||
from f5_tts.model.backbones.unett import UNetT
|
||||
from f5_tts.model.backbones.dit import DiT
|
||||
from f5_tts.model.backbones.mmdit import MMDiT
|
||||
|
||||
from f5_tts.model.backbones.unett import UNetT
|
||||
from f5_tts.model.cfm import CFM
|
||||
from f5_tts.model.trainer import Trainer
|
||||
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
### unett.py
|
||||
- flat unet transformer
|
||||
- structure same as in e2-tts & voicebox paper except using rotary pos emb
|
||||
- update: allow possible abs pos emb & convnextv2 blocks for embedded text before concat
|
||||
- possible abs pos emb & convnextv2 blocks for embedded text before concat
|
||||
|
||||
### dit.py
|
||||
- adaln-zero dit
|
||||
@@ -14,7 +14,7 @@
|
||||
- possible long skip connection (first layer to last layer)
|
||||
|
||||
### mmdit.py
|
||||
- sd3 structure
|
||||
- stable diffusion 3 block structure
|
||||
- timestep as condition
|
||||
- left stream: text embedded and applied a abs pos emb
|
||||
- right stream: masked_cond & noised_input concatted and with same conv pos emb as unett
|
||||
|
||||
@@ -6,23 +6,23 @@ nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
# ruff: noqa: F722 F821
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch import nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from x_transformers.x_transformers import RotaryEmbedding
|
||||
|
||||
from f5_tts.model.modules import (
|
||||
TimestepEmbedding,
|
||||
AdaLayerNorm_Final,
|
||||
ConvNeXtV2Block,
|
||||
ConvPositionEmbedding,
|
||||
DiTBlock,
|
||||
AdaLayerNormZero_Final,
|
||||
TimestepEmbedding,
|
||||
precompute_freqs_cis,
|
||||
get_pos_embed_indices,
|
||||
)
|
||||
|
||||
|
||||
@@ -30,10 +30,17 @@ from f5_tts.model.modules import (
|
||||
|
||||
|
||||
class TextEmbedding(nn.Module):
|
||||
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
||||
def __init__(
|
||||
self, text_num_embeds, text_dim, mask_padding=True, average_upsampling=False, conv_layers=0, conv_mult=2
|
||||
):
|
||||
super().__init__()
|
||||
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
||||
|
||||
self.mask_padding = mask_padding # mask filler and batch padding tokens or not
|
||||
self.average_upsampling = average_upsampling # zipvoice-style text late average upsampling (after text encoder)
|
||||
if average_upsampling:
|
||||
assert mask_padding, "text_embedding_average_upsampling requires text_mask_padding to be True"
|
||||
|
||||
if conv_layers > 0:
|
||||
self.extra_modeling = True
|
||||
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
||||
@@ -44,11 +51,48 @@ class TextEmbedding(nn.Module):
|
||||
else:
|
||||
self.extra_modeling = False
|
||||
|
||||
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
||||
def average_upsample_text_by_mask(self, text, text_mask, audio_mask):
|
||||
batch, text_len, text_dim = text.shape
|
||||
|
||||
if audio_mask is None:
|
||||
audio_mask = torch.ones_like(text_mask, dtype=torch.bool)
|
||||
valid_mask = audio_mask & text_mask
|
||||
audio_lens = audio_mask.sum(dim=1) # [batch]
|
||||
valid_lens = valid_mask.sum(dim=1) # [batch]
|
||||
|
||||
upsampled_text = torch.zeros_like(text)
|
||||
|
||||
for i in range(batch):
|
||||
audio_len = audio_lens[i].item()
|
||||
valid_len = valid_lens[i].item()
|
||||
|
||||
if valid_len == 0:
|
||||
continue
|
||||
|
||||
valid_ind = torch.where(valid_mask[i])[0]
|
||||
valid_data = text[i, valid_ind, :] # [valid_len, text_dim]
|
||||
|
||||
base_repeat = audio_len // valid_len
|
||||
remainder = audio_len % valid_len
|
||||
|
||||
indices = []
|
||||
for j in range(valid_len):
|
||||
repeat_count = base_repeat + (1 if j >= valid_len - remainder else 0)
|
||||
indices.extend([j] * repeat_count)
|
||||
|
||||
indices = torch.tensor(indices[:audio_len], device=text.device, dtype=torch.long)
|
||||
upsampled = valid_data[indices] # [audio_len, text_dim]
|
||||
|
||||
upsampled_text[i, :audio_len, :] = upsampled
|
||||
|
||||
return upsampled_text
|
||||
|
||||
def forward(self, text: int["b nt"], seq_len, drop_text=False, audio_mask: bool["b n"] | None = None):
|
||||
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
||||
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
||||
batch, text_len = text.shape[0], text.shape[1]
|
||||
text = F.pad(text, (0, seq_len - text_len), value=0)
|
||||
text = F.pad(text, (0, seq_len - text.shape[1]), value=0) # (opt.) if not self.average_upsampling:
|
||||
if self.mask_padding:
|
||||
text_mask = text == 0
|
||||
|
||||
if drop_text: # cfg for text
|
||||
text = torch.zeros_like(text)
|
||||
@@ -58,13 +102,19 @@ class TextEmbedding(nn.Module):
|
||||
# possible extra modeling
|
||||
if self.extra_modeling:
|
||||
# sinus pos emb
|
||||
batch_start = torch.zeros((batch,), dtype=torch.long)
|
||||
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
||||
text_pos_embed = self.freqs_cis[pos_idx]
|
||||
text = text + text_pos_embed
|
||||
text = text + self.freqs_cis[:seq_len, :]
|
||||
|
||||
# convnextv2 blocks
|
||||
text = self.text_blocks(text)
|
||||
if self.mask_padding:
|
||||
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
||||
for block in self.text_blocks:
|
||||
text = block(text)
|
||||
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
||||
else:
|
||||
text = self.text_blocks(text)
|
||||
|
||||
if self.average_upsampling:
|
||||
text = self.average_upsample_text_by_mask(text, ~text_mask, audio_mask)
|
||||
|
||||
return text
|
||||
|
||||
@@ -78,12 +128,19 @@ class InputEmbedding(nn.Module):
|
||||
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
||||
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
||||
|
||||
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"],
|
||||
cond: float["b n d"],
|
||||
text_embed: float["b n d"],
|
||||
drop_audio_cond=False,
|
||||
audio_mask: bool["b n"] | None = None,
|
||||
):
|
||||
if drop_audio_cond: # cfg for cond audio
|
||||
cond = torch.zeros_like(cond)
|
||||
|
||||
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
|
||||
x = self.conv_pos_embed(x) + x
|
||||
x = self.conv_pos_embed(x, mask=audio_mask) + x
|
||||
return x
|
||||
|
||||
|
||||
@@ -103,7 +160,13 @@ class DiT(nn.Module):
|
||||
mel_dim=100,
|
||||
text_num_embeds=256,
|
||||
text_dim=None,
|
||||
text_mask_padding=True,
|
||||
text_embedding_average_upsampling=False,
|
||||
qk_norm=None,
|
||||
conv_layers=0,
|
||||
pe_attn_head=None,
|
||||
attn_backend="torch", # "torch" | "flash_attn"
|
||||
attn_mask_enabled=False,
|
||||
long_skip_connection=False,
|
||||
checkpoint_activations=False,
|
||||
):
|
||||
@@ -112,7 +175,14 @@ class DiT(nn.Module):
|
||||
self.time_embed = TimestepEmbedding(dim)
|
||||
if text_dim is None:
|
||||
text_dim = mel_dim
|
||||
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
||||
self.text_embed = TextEmbedding(
|
||||
text_num_embeds,
|
||||
text_dim,
|
||||
mask_padding=text_mask_padding,
|
||||
average_upsampling=text_embedding_average_upsampling,
|
||||
conv_layers=conv_layers,
|
||||
)
|
||||
self.text_cond, self.text_uncond = None, None # text cache
|
||||
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
||||
|
||||
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||
@@ -121,15 +191,42 @@ class DiT(nn.Module):
|
||||
self.depth = depth
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
|
||||
[
|
||||
DiTBlock(
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
ff_mult=ff_mult,
|
||||
dropout=dropout,
|
||||
qk_norm=qk_norm,
|
||||
pe_attn_head=pe_attn_head,
|
||||
attn_backend=attn_backend,
|
||||
attn_mask_enabled=attn_mask_enabled,
|
||||
)
|
||||
for _ in range(depth)
|
||||
]
|
||||
)
|
||||
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
||||
|
||||
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
||||
self.norm_out = AdaLayerNorm_Final(dim) # final modulation
|
||||
self.proj_out = nn.Linear(dim, mel_dim)
|
||||
|
||||
self.checkpoint_activations = checkpoint_activations
|
||||
|
||||
self.initialize_weights()
|
||||
|
||||
def initialize_weights(self):
|
||||
# Zero-out AdaLN layers in DiT blocks:
|
||||
for block in self.transformer_blocks:
|
||||
nn.init.constant_(block.attn_norm.linear.weight, 0)
|
||||
nn.init.constant_(block.attn_norm.linear.bias, 0)
|
||||
|
||||
# Zero-out output layers:
|
||||
nn.init.constant_(self.norm_out.linear.weight, 0)
|
||||
nn.init.constant_(self.norm_out.linear.bias, 0)
|
||||
nn.init.constant_(self.proj_out.weight, 0)
|
||||
nn.init.constant_(self.proj_out.bias, 0)
|
||||
|
||||
def ckpt_wrapper(self, module):
|
||||
# https://github.com/chuanyangjin/fast-DiT/blob/main/models.py
|
||||
def ckpt_forward(*inputs):
|
||||
@@ -138,24 +235,83 @@ class DiT(nn.Module):
|
||||
|
||||
return ckpt_forward
|
||||
|
||||
def get_input_embed(
|
||||
self,
|
||||
x, # b n d
|
||||
cond, # b n d
|
||||
text, # b nt
|
||||
drop_audio_cond: bool = False,
|
||||
drop_text: bool = False,
|
||||
cache: bool = True,
|
||||
audio_mask: bool["b n"] | None = None,
|
||||
):
|
||||
if self.text_uncond is None or self.text_cond is None or not cache:
|
||||
if audio_mask is None:
|
||||
text_embed = self.text_embed(text, x.shape[1], drop_text=drop_text, audio_mask=audio_mask)
|
||||
else:
|
||||
batch = x.shape[0]
|
||||
seq_lens = audio_mask.sum(dim=1)
|
||||
text_embed_list = []
|
||||
for i in range(batch):
|
||||
text_embed_i = self.text_embed(
|
||||
text[i].unsqueeze(0),
|
||||
seq_lens[i].item(),
|
||||
drop_text=drop_text,
|
||||
audio_mask=audio_mask,
|
||||
)
|
||||
text_embed_list.append(text_embed_i[0])
|
||||
text_embed = pad_sequence(text_embed_list, batch_first=True, padding_value=0)
|
||||
if cache:
|
||||
if drop_text:
|
||||
self.text_uncond = text_embed
|
||||
else:
|
||||
self.text_cond = text_embed
|
||||
|
||||
if cache:
|
||||
if drop_text:
|
||||
text_embed = self.text_uncond
|
||||
else:
|
||||
text_embed = self.text_cond
|
||||
|
||||
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond, audio_mask=audio_mask)
|
||||
|
||||
return x
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
drop_audio_cond, # cfg for cond audio
|
||||
drop_text, # cfg for text
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
x: float["b n d"], # nosied input audio
|
||||
cond: float["b n d"], # masked cond audio
|
||||
text: int["b nt"], # text
|
||||
time: float["b"] | float[""], # time step
|
||||
mask: bool["b n"] | None = None,
|
||||
drop_audio_cond: bool = False, # cfg for cond audio
|
||||
drop_text: bool = False, # cfg for text
|
||||
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
||||
cache: bool = False,
|
||||
):
|
||||
batch, seq_len = x.shape[0], x.shape[1]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||
# t: conditioning time, text: text, x: noised audio + cond audio + text
|
||||
t = self.time_embed(time)
|
||||
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
||||
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
||||
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
||||
x_cond = self.get_input_embed(
|
||||
x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache, audio_mask=mask
|
||||
)
|
||||
x_uncond = self.get_input_embed(
|
||||
x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache, audio_mask=mask
|
||||
)
|
||||
x = torch.cat((x_cond, x_uncond), dim=0)
|
||||
t = torch.cat((t, t), dim=0)
|
||||
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
||||
else:
|
||||
x = self.get_input_embed(
|
||||
x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache, audio_mask=mask
|
||||
)
|
||||
|
||||
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
||||
|
||||
@@ -164,7 +320,8 @@ class DiT(nn.Module):
|
||||
|
||||
for block in self.transformer_blocks:
|
||||
if self.checkpoint_activations:
|
||||
x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, t, mask, rope)
|
||||
# https://pytorch.org/docs/stable/checkpoint.html#torch.utils.checkpoint.checkpoint
|
||||
x = torch.utils.checkpoint.checkpoint(self.ckpt_wrapper(block), x, t, mask, rope, use_reentrant=False)
|
||||
else:
|
||||
x = block(x, t, mask=mask, rope=rope)
|
||||
|
||||
|
||||
@@ -6,21 +6,21 @@ nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
# ruff: noqa: F722 F821
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from x_transformers.x_transformers import RotaryEmbedding
|
||||
|
||||
from f5_tts.model.modules import (
|
||||
TimestepEmbedding,
|
||||
AdaLayerNorm_Final,
|
||||
ConvPositionEmbedding,
|
||||
MMDiTBlock,
|
||||
AdaLayerNormZero_Final,
|
||||
precompute_freqs_cis,
|
||||
TimestepEmbedding,
|
||||
get_pos_embed_indices,
|
||||
precompute_freqs_cis,
|
||||
)
|
||||
|
||||
|
||||
@@ -28,18 +28,24 @@ from f5_tts.model.modules import (
|
||||
|
||||
|
||||
class TextEmbedding(nn.Module):
|
||||
def __init__(self, out_dim, text_num_embeds):
|
||||
def __init__(self, out_dim, text_num_embeds, mask_padding=True):
|
||||
super().__init__()
|
||||
self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
|
||||
|
||||
self.mask_padding = mask_padding # mask filler and batch padding tokens or not
|
||||
|
||||
self.precompute_max_pos = 1024
|
||||
self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
|
||||
|
||||
def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722
|
||||
text = text + 1
|
||||
if drop_text:
|
||||
def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]:
|
||||
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
||||
if self.mask_padding:
|
||||
text_mask = text == 0
|
||||
|
||||
if drop_text: # cfg for text
|
||||
text = torch.zeros_like(text)
|
||||
text = self.text_embed(text)
|
||||
|
||||
text = self.text_embed(text) # b nt -> b nt d
|
||||
|
||||
# sinus pos emb
|
||||
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
|
||||
@@ -49,6 +55,9 @@ class TextEmbedding(nn.Module):
|
||||
|
||||
text = text + text_pos_embed
|
||||
|
||||
if self.mask_padding:
|
||||
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
@@ -61,7 +70,7 @@ class AudioEmbedding(nn.Module):
|
||||
self.linear = nn.Linear(2 * in_dim, out_dim)
|
||||
self.conv_pos_embed = ConvPositionEmbedding(out_dim)
|
||||
|
||||
def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False): # noqa: F722
|
||||
def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False):
|
||||
if drop_audio_cond:
|
||||
cond = torch.zeros_like(cond)
|
||||
x = torch.cat((x, cond), dim=-1)
|
||||
@@ -83,13 +92,16 @@ class MMDiT(nn.Module):
|
||||
dim_head=64,
|
||||
dropout=0.1,
|
||||
ff_mult=4,
|
||||
text_num_embeds=256,
|
||||
mel_dim=100,
|
||||
text_num_embeds=256,
|
||||
text_mask_padding=True,
|
||||
qk_norm=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.time_embed = TimestepEmbedding(dim)
|
||||
self.text_embed = TextEmbedding(dim, text_num_embeds)
|
||||
self.text_embed = TextEmbedding(dim, text_num_embeds, mask_padding=text_mask_padding)
|
||||
self.text_cond, self.text_uncond = None, None # text cache
|
||||
self.audio_embed = AudioEmbedding(mel_dim, dim)
|
||||
|
||||
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||
@@ -106,22 +118,68 @@ class MMDiT(nn.Module):
|
||||
dropout=dropout,
|
||||
ff_mult=ff_mult,
|
||||
context_pre_only=i == depth - 1,
|
||||
qk_norm=qk_norm,
|
||||
)
|
||||
for i in range(depth)
|
||||
]
|
||||
)
|
||||
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
||||
self.norm_out = AdaLayerNorm_Final(dim) # final modulation
|
||||
self.proj_out = nn.Linear(dim, mel_dim)
|
||||
|
||||
self.initialize_weights()
|
||||
|
||||
def initialize_weights(self):
|
||||
# Zero-out AdaLN layers in MMDiT blocks:
|
||||
for block in self.transformer_blocks:
|
||||
nn.init.constant_(block.attn_norm_x.linear.weight, 0)
|
||||
nn.init.constant_(block.attn_norm_x.linear.bias, 0)
|
||||
nn.init.constant_(block.attn_norm_c.linear.weight, 0)
|
||||
nn.init.constant_(block.attn_norm_c.linear.bias, 0)
|
||||
|
||||
# Zero-out output layers:
|
||||
nn.init.constant_(self.norm_out.linear.weight, 0)
|
||||
nn.init.constant_(self.norm_out.linear.bias, 0)
|
||||
nn.init.constant_(self.proj_out.weight, 0)
|
||||
nn.init.constant_(self.proj_out.bias, 0)
|
||||
|
||||
def get_input_embed(
|
||||
self,
|
||||
x, # b n d
|
||||
cond, # b n d
|
||||
text, # b nt
|
||||
drop_audio_cond: bool = False,
|
||||
drop_text: bool = False,
|
||||
cache: bool = True,
|
||||
):
|
||||
if cache:
|
||||
if drop_text:
|
||||
if self.text_uncond is None:
|
||||
self.text_uncond = self.text_embed(text, drop_text=True)
|
||||
c = self.text_uncond
|
||||
else:
|
||||
if self.text_cond is None:
|
||||
self.text_cond = self.text_embed(text, drop_text=False)
|
||||
c = self.text_cond
|
||||
else:
|
||||
c = self.text_embed(text, drop_text=drop_text)
|
||||
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
|
||||
|
||||
return x, c
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
drop_audio_cond, # cfg for cond audio
|
||||
drop_text, # cfg for text
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
x: float["b n d"], # nosied input audio
|
||||
cond: float["b n d"], # masked cond audio
|
||||
text: int["b nt"], # text
|
||||
time: float["b"] | float[""], # time step
|
||||
mask: bool["b n"] | None = None,
|
||||
drop_audio_cond: bool = False, # cfg for cond audio
|
||||
drop_text: bool = False, # cfg for text
|
||||
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
||||
cache: bool = False,
|
||||
):
|
||||
batch = x.shape[0]
|
||||
if time.ndim == 0:
|
||||
@@ -129,8 +187,17 @@ class MMDiT(nn.Module):
|
||||
|
||||
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
c = self.text_embed(text, drop_text=drop_text)
|
||||
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
|
||||
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
||||
x_cond, c_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
|
||||
x_uncond, c_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
|
||||
x = torch.cat((x_cond, x_uncond), dim=0)
|
||||
c = torch.cat((c_cond, c_uncond), dim=0)
|
||||
t = torch.cat((t, t), dim=0)
|
||||
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
||||
else:
|
||||
x, c = self.get_input_embed(
|
||||
x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache
|
||||
)
|
||||
|
||||
seq_len = x.shape[1]
|
||||
text_len = text.shape[1]
|
||||
|
||||
@@ -6,26 +6,27 @@ nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
# ruff: noqa: F722 F821
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch import nn
|
||||
from x_transformers import RMSNorm
|
||||
from x_transformers.x_transformers import RotaryEmbedding
|
||||
|
||||
from f5_tts.model.modules import (
|
||||
TimestepEmbedding,
|
||||
ConvNeXtV2Block,
|
||||
ConvPositionEmbedding,
|
||||
Attention,
|
||||
AttnProcessor,
|
||||
ConvNeXtV2Block,
|
||||
ConvPositionEmbedding,
|
||||
FeedForward,
|
||||
precompute_freqs_cis,
|
||||
TimestepEmbedding,
|
||||
get_pos_embed_indices,
|
||||
precompute_freqs_cis,
|
||||
)
|
||||
|
||||
|
||||
@@ -33,10 +34,12 @@ from f5_tts.model.modules import (
|
||||
|
||||
|
||||
class TextEmbedding(nn.Module):
|
||||
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
||||
def __init__(self, text_num_embeds, text_dim, mask_padding=True, conv_layers=0, conv_mult=2):
|
||||
super().__init__()
|
||||
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
||||
|
||||
self.mask_padding = mask_padding # mask filler and batch padding tokens or not
|
||||
|
||||
if conv_layers > 0:
|
||||
self.extra_modeling = True
|
||||
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
||||
@@ -47,11 +50,13 @@ class TextEmbedding(nn.Module):
|
||||
else:
|
||||
self.extra_modeling = False
|
||||
|
||||
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
||||
def forward(self, text: int["b nt"], seq_len, drop_text=False):
|
||||
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
||||
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
||||
batch, text_len = text.shape[0], text.shape[1]
|
||||
text = F.pad(text, (0, seq_len - text_len), value=0)
|
||||
if self.mask_padding:
|
||||
text_mask = text == 0
|
||||
|
||||
if drop_text: # cfg for text
|
||||
text = torch.zeros_like(text)
|
||||
@@ -67,7 +72,13 @@ class TextEmbedding(nn.Module):
|
||||
text = text + text_pos_embed
|
||||
|
||||
# convnextv2 blocks
|
||||
text = self.text_blocks(text)
|
||||
if self.mask_padding:
|
||||
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
||||
for block in self.text_blocks:
|
||||
text = block(text)
|
||||
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
||||
else:
|
||||
text = self.text_blocks(text)
|
||||
|
||||
return text
|
||||
|
||||
@@ -81,7 +92,7 @@ class InputEmbedding(nn.Module):
|
||||
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
||||
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
||||
|
||||
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
|
||||
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False):
|
||||
if drop_audio_cond: # cfg for cond audio
|
||||
cond = torch.zeros_like(cond)
|
||||
|
||||
@@ -106,7 +117,12 @@ class UNetT(nn.Module):
|
||||
mel_dim=100,
|
||||
text_num_embeds=256,
|
||||
text_dim=None,
|
||||
text_mask_padding=True,
|
||||
qk_norm=None,
|
||||
conv_layers=0,
|
||||
pe_attn_head=None,
|
||||
attn_backend="torch", # "torch" | "flash_attn"
|
||||
attn_mask_enabled=False,
|
||||
skip_connect_type: Literal["add", "concat", "none"] = "concat",
|
||||
):
|
||||
super().__init__()
|
||||
@@ -115,7 +131,10 @@ class UNetT(nn.Module):
|
||||
self.time_embed = TimestepEmbedding(dim)
|
||||
if text_dim is None:
|
||||
text_dim = mel_dim
|
||||
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
||||
self.text_embed = TextEmbedding(
|
||||
text_num_embeds, text_dim, mask_padding=text_mask_padding, conv_layers=conv_layers
|
||||
)
|
||||
self.text_cond, self.text_uncond = None, None # text cache
|
||||
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
||||
|
||||
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||
@@ -134,11 +153,16 @@ class UNetT(nn.Module):
|
||||
|
||||
attn_norm = RMSNorm(dim)
|
||||
attn = Attention(
|
||||
processor=AttnProcessor(),
|
||||
processor=AttnProcessor(
|
||||
pe_attn_head=pe_attn_head,
|
||||
attn_backend=attn_backend,
|
||||
attn_mask_enabled=attn_mask_enabled,
|
||||
),
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
dropout=dropout,
|
||||
qk_norm=qk_norm,
|
||||
)
|
||||
|
||||
ff_norm = RMSNorm(dim)
|
||||
@@ -161,15 +185,46 @@ class UNetT(nn.Module):
|
||||
self.norm_out = RMSNorm(dim)
|
||||
self.proj_out = nn.Linear(dim, mel_dim)
|
||||
|
||||
def get_input_embed(
|
||||
self,
|
||||
x, # b n d
|
||||
cond, # b n d
|
||||
text, # b nt
|
||||
drop_audio_cond: bool = False,
|
||||
drop_text: bool = False,
|
||||
cache: bool = True,
|
||||
):
|
||||
seq_len = x.shape[1]
|
||||
if cache:
|
||||
if drop_text:
|
||||
if self.text_uncond is None:
|
||||
self.text_uncond = self.text_embed(text, seq_len, drop_text=True)
|
||||
text_embed = self.text_uncond
|
||||
else:
|
||||
if self.text_cond is None:
|
||||
self.text_cond = self.text_embed(text, seq_len, drop_text=False)
|
||||
text_embed = self.text_cond
|
||||
else:
|
||||
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
||||
|
||||
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
||||
|
||||
return x
|
||||
|
||||
def clear_cache(self):
|
||||
self.text_cond, self.text_uncond = None, None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
drop_audio_cond, # cfg for cond audio
|
||||
drop_text, # cfg for text
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
x: float["b n d"], # nosied input audio
|
||||
cond: float["b n d"], # masked cond audio
|
||||
text: int["b nt"], # text
|
||||
time: float["b"] | float[""], # time step
|
||||
mask: bool["b n"] | None = None,
|
||||
drop_audio_cond: bool = False, # cfg for cond audio
|
||||
drop_text: bool = False, # cfg for text
|
||||
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
||||
cache: bool = False,
|
||||
):
|
||||
batch, seq_len = x.shape[0], x.shape[1]
|
||||
if time.ndim == 0:
|
||||
@@ -177,8 +232,14 @@ class UNetT(nn.Module):
|
||||
|
||||
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
||||
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
||||
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
||||
x_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
|
||||
x_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
|
||||
x = torch.cat((x_cond, x_uncond), dim=0)
|
||||
t = torch.cat((t, t), dim=0)
|
||||
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
||||
else:
|
||||
x = self.get_input_embed(x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache)
|
||||
|
||||
# postfix time t to input x, [b n d] -> [b n+1 d]
|
||||
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
|
||||
|
||||
@@ -6,6 +6,7 @@ nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
# ruff: noqa: F722 F821
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
@@ -22,6 +23,7 @@ from f5_tts.model.modules import MelSpec
|
||||
from f5_tts.model.utils import (
|
||||
default,
|
||||
exists,
|
||||
get_epss_timesteps,
|
||||
lens_to_mask,
|
||||
list_str_to_idx,
|
||||
list_str_to_tensor,
|
||||
@@ -81,17 +83,18 @@ class CFM(nn.Module):
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
cond: float["b n d"] | float["b nw"], # noqa: F722
|
||||
text: int["b nt"] | list[str], # noqa: F722
|
||||
duration: int | int["b"], # noqa: F821
|
||||
cond: float["b n d"] | float["b nw"],
|
||||
text: int["b nt"] | list[str],
|
||||
duration: int | int["b"],
|
||||
*,
|
||||
lens: int["b"] | None = None, # noqa: F821
|
||||
lens: int["b"] | None = None,
|
||||
steps=32,
|
||||
cfg_strength=1.0,
|
||||
sway_sampling_coef=None,
|
||||
seed: int | None = None,
|
||||
max_duration=4096,
|
||||
vocoder: Callable[[float["b d n"]], float["b nw"]] | None = None, # noqa: F722
|
||||
vocoder: Callable[[float["b d n"]], float["b nw"]] | None = None,
|
||||
use_epss=True,
|
||||
no_ref_audio=False,
|
||||
duplicate_test=False,
|
||||
t_inter=0.1,
|
||||
@@ -160,16 +163,31 @@ class CFM(nn.Module):
|
||||
# at each step, conditioning is fixed
|
||||
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
||||
|
||||
# predict flow
|
||||
pred = self.transformer(
|
||||
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False
|
||||
)
|
||||
# predict flow (cond)
|
||||
if cfg_strength < 1e-5:
|
||||
pred = self.transformer(
|
||||
x=x,
|
||||
cond=step_cond,
|
||||
text=text,
|
||||
time=t,
|
||||
mask=mask,
|
||||
drop_audio_cond=False,
|
||||
drop_text=False,
|
||||
cache=True,
|
||||
)
|
||||
return pred
|
||||
|
||||
null_pred = self.transformer(
|
||||
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True
|
||||
# predict flow (cond and uncond), for classifier-free guidance
|
||||
pred_cfg = self.transformer(
|
||||
x=x,
|
||||
cond=step_cond,
|
||||
text=text,
|
||||
time=t,
|
||||
mask=mask,
|
||||
cfg_infer=True,
|
||||
cache=True,
|
||||
)
|
||||
pred, null_pred = torch.chunk(pred_cfg, 2, dim=0)
|
||||
return pred + (pred - null_pred) * cfg_strength
|
||||
|
||||
# noise input
|
||||
@@ -190,11 +208,15 @@ class CFM(nn.Module):
|
||||
y0 = (1 - t_start) * y0 + t_start * test_cond
|
||||
steps = int(steps * (1 - t_start))
|
||||
|
||||
t = torch.linspace(t_start, 1, steps + 1, device=self.device, dtype=step_cond.dtype)
|
||||
if t_start == 0 and use_epss: # use Empirically Pruned Step Sampling for low NFE
|
||||
t = get_epss_timesteps(steps, device=self.device, dtype=step_cond.dtype)
|
||||
else:
|
||||
t = torch.linspace(t_start, 1, steps + 1, device=self.device, dtype=step_cond.dtype)
|
||||
if sway_sampling_coef is not None:
|
||||
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
||||
|
||||
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
||||
self.transformer.clear_cache()
|
||||
|
||||
sampled = trajectory[-1]
|
||||
out = sampled
|
||||
@@ -208,10 +230,10 @@ class CFM(nn.Module):
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inp: float["b n d"] | float["b nw"], # mel or raw wave # noqa: F722
|
||||
text: int["b nt"] | list[str], # noqa: F722
|
||||
inp: float["b n d"] | float["b nw"], # mel or raw wave
|
||||
text: int["b nt"] | list[str],
|
||||
*,
|
||||
lens: int["b"] | None = None, # noqa: F821
|
||||
lens: int["b"] | None = None,
|
||||
noise_scheduler: str | None = None,
|
||||
):
|
||||
# handle raw wave
|
||||
@@ -231,10 +253,9 @@ class CFM(nn.Module):
|
||||
assert text.shape[0] == batch
|
||||
|
||||
# lens and mask
|
||||
if not exists(lens):
|
||||
if not exists(lens): # if lens not acquired by trainer from collate_fn
|
||||
lens = torch.full((batch,), seq_len, device=device)
|
||||
|
||||
mask = lens_to_mask(lens, length=seq_len) # useless here, as collate_fn will pad to max length in batch
|
||||
mask = lens_to_mask(lens, length=seq_len)
|
||||
|
||||
# get a random span to mask out for training conditionally
|
||||
frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
|
||||
@@ -269,10 +290,9 @@ class CFM(nn.Module):
|
||||
else:
|
||||
drop_text = False
|
||||
|
||||
# if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
|
||||
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
||||
# apply mask will use more memory; might adjust batchsize or batchsampler long sequence threshold
|
||||
pred = self.transformer(
|
||||
x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text
|
||||
x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text, mask=mask
|
||||
)
|
||||
|
||||
# flow matching loss
|
||||
|
||||
@@ -173,7 +173,7 @@ class DynamicBatchSampler(Sampler[list[int]]):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_last: bool = False
|
||||
self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_residual: bool = False
|
||||
):
|
||||
self.sampler = sampler
|
||||
self.frames_threshold = frames_threshold
|
||||
@@ -208,12 +208,15 @@ class DynamicBatchSampler(Sampler[list[int]]):
|
||||
batch = []
|
||||
batch_frames = 0
|
||||
|
||||
if not drop_last and len(batch) > 0:
|
||||
if not drop_residual and len(batch) > 0:
|
||||
batches.append(batch)
|
||||
|
||||
del indices
|
||||
self.batches = batches
|
||||
|
||||
# Ensure even batches with accelerate BatchSamplerShard cls under frame_per_batch setting
|
||||
self.drop_last = True
|
||||
|
||||
def set_epoch(self, epoch: int) -> None:
|
||||
"""Sets the epoch for this sampler."""
|
||||
self.epoch = epoch
|
||||
@@ -309,7 +312,7 @@ def collate_fn(batch):
|
||||
max_mel_length = mel_lengths.amax()
|
||||
|
||||
padded_mel_specs = []
|
||||
for spec in mel_specs: # TODO. maybe records mask for attention here
|
||||
for spec in mel_specs:
|
||||
padding = (0, max_mel_length - spec.size(-1))
|
||||
padded_spec = F.pad(spec, padding, value=0)
|
||||
padded_mel_specs.append(padded_spec)
|
||||
@@ -321,7 +324,7 @@ def collate_fn(batch):
|
||||
|
||||
return dict(
|
||||
mel=mel_specs,
|
||||
mel_lengths=mel_lengths,
|
||||
mel_lengths=mel_lengths, # records for padding mask
|
||||
text=text,
|
||||
text_lengths=text_lengths,
|
||||
)
|
||||
|
||||
@@ -6,6 +6,7 @@ nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
# ruff: noqa: F722 F821
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
@@ -19,6 +20,8 @@ from librosa.filters import mel as librosa_mel_fn
|
||||
from torch import nn
|
||||
from x_transformers.x_transformers import apply_rotary_pos_emb
|
||||
|
||||
from f5_tts.model.utils import is_package_available
|
||||
|
||||
|
||||
# raw wav to mel spec
|
||||
|
||||
@@ -174,20 +177,23 @@ class ConvPositionEmbedding(nn.Module):
|
||||
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
||||
nn.Mish(),
|
||||
)
|
||||
self.layer_need_mask_idx = [i for i, layer in enumerate(self.conv1d) if isinstance(layer, nn.Conv1d)]
|
||||
|
||||
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None):
|
||||
if mask is not None:
|
||||
mask = mask.unsqueeze(1) # [B 1 N]
|
||||
x = x.permute(0, 2, 1) # [B D N]
|
||||
|
||||
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
|
||||
if mask is not None:
|
||||
mask = mask[..., None]
|
||||
x = x.masked_fill(~mask, 0.0)
|
||||
for i, block in enumerate(self.conv1d):
|
||||
x = block(x)
|
||||
if mask is not None and i in self.layer_need_mask_idx:
|
||||
x = x.masked_fill(~mask, 0.0)
|
||||
|
||||
x = x.permute(0, 2, 1)
|
||||
x = self.conv1d(x)
|
||||
out = x.permute(0, 2, 1)
|
||||
x = x.permute(0, 2, 1) # [B N D]
|
||||
|
||||
if mask is not None:
|
||||
out = out.masked_fill(~mask, 0.0)
|
||||
|
||||
return out
|
||||
return x
|
||||
|
||||
|
||||
# rotary positional embedding related
|
||||
@@ -269,11 +275,36 @@ class ConvNeXtV2Block(nn.Module):
|
||||
return residual + x
|
||||
|
||||
|
||||
# AdaLayerNormZero
|
||||
# RMSNorm
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dim: int, eps: float):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.ones(dim))
|
||||
self.native_rms_norm = float(torch.__version__[:3]) >= 2.4
|
||||
|
||||
def forward(self, x):
|
||||
if self.native_rms_norm:
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
x = x.to(self.weight.dtype)
|
||||
x = F.rms_norm(x, normalized_shape=(x.shape[-1],), weight=self.weight, eps=self.eps)
|
||||
else:
|
||||
variance = x.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
||||
x = x * torch.rsqrt(variance + self.eps)
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
x = x.to(self.weight.dtype)
|
||||
x = x * self.weight
|
||||
|
||||
return x
|
||||
|
||||
|
||||
# AdaLayerNorm
|
||||
# return with modulated x for attn input, and params for later mlp modulation
|
||||
|
||||
|
||||
class AdaLayerNormZero(nn.Module):
|
||||
class AdaLayerNorm(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
|
||||
@@ -290,11 +321,11 @@ class AdaLayerNormZero(nn.Module):
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
# AdaLayerNormZero for final layer
|
||||
# AdaLayerNorm for final layer
|
||||
# return only with modulated x for attn input, cuz no more mlp modulation
|
||||
|
||||
|
||||
class AdaLayerNormZero_Final(nn.Module):
|
||||
class AdaLayerNorm_Final(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
|
||||
@@ -341,7 +372,8 @@ class Attention(nn.Module):
|
||||
dim_head: int = 64,
|
||||
dropout: float = 0.0,
|
||||
context_dim: Optional[int] = None, # if not None -> joint attention
|
||||
context_pre_only=None,
|
||||
context_pre_only: bool = False,
|
||||
qk_norm: Optional[str] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -362,24 +394,38 @@ class Attention(nn.Module):
|
||||
self.to_k = nn.Linear(dim, self.inner_dim)
|
||||
self.to_v = nn.Linear(dim, self.inner_dim)
|
||||
|
||||
if qk_norm is None:
|
||||
self.q_norm = None
|
||||
self.k_norm = None
|
||||
elif qk_norm == "rms_norm":
|
||||
self.q_norm = RMSNorm(dim_head, eps=1e-6)
|
||||
self.k_norm = RMSNorm(dim_head, eps=1e-6)
|
||||
else:
|
||||
raise ValueError(f"Unimplemented qk_norm: {qk_norm}")
|
||||
|
||||
if self.context_dim is not None:
|
||||
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
||||
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
||||
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
||||
if self.context_pre_only is not None:
|
||||
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
||||
if qk_norm is None:
|
||||
self.c_q_norm = None
|
||||
self.c_k_norm = None
|
||||
elif qk_norm == "rms_norm":
|
||||
self.c_q_norm = RMSNorm(dim_head, eps=1e-6)
|
||||
self.c_k_norm = RMSNorm(dim_head, eps=1e-6)
|
||||
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
||||
self.to_out.append(nn.Dropout(dropout))
|
||||
|
||||
if self.context_pre_only is not None and not self.context_pre_only:
|
||||
self.to_out_c = nn.Linear(self.inner_dim, dim)
|
||||
if self.context_dim is not None and not self.context_pre_only:
|
||||
self.to_out_c = nn.Linear(self.inner_dim, context_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # noised input x # noqa: F722
|
||||
c: float["b n d"] = None, # context c # noqa: F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
x: float["b n d"], # noised input x
|
||||
c: float["b n d"] = None, # context c
|
||||
mask: bool["b n"] | None = None,
|
||||
rope=None, # rotary position embedding for x
|
||||
c_rope=None, # rotary position embedding for c
|
||||
) -> torch.Tensor:
|
||||
@@ -391,33 +437,39 @@ class Attention(nn.Module):
|
||||
|
||||
# Attention processor
|
||||
|
||||
if is_package_available("flash_attn"):
|
||||
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
||||
from flash_attn.bert_padding import pad_input, unpad_input
|
||||
|
||||
|
||||
class AttnProcessor:
|
||||
def __init__(self):
|
||||
pass
|
||||
def __init__(
|
||||
self,
|
||||
pe_attn_head: int | None = None, # number of attention head to apply rope, None for all
|
||||
attn_backend: str = "torch", # "torch" or "flash_attn"
|
||||
attn_mask_enabled: bool = True,
|
||||
):
|
||||
if attn_backend == "flash_attn":
|
||||
assert is_package_available("flash_attn"), "Please install flash-attn first."
|
||||
|
||||
self.pe_attn_head = pe_attn_head
|
||||
self.attn_backend = attn_backend
|
||||
self.attn_mask_enabled = attn_mask_enabled
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
x: float["b n d"], # noised input x # noqa: F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
x: float["b n d"], # noised input x
|
||||
mask: bool["b n"] | None = None,
|
||||
rope=None, # rotary position embedding
|
||||
) -> torch.FloatTensor:
|
||||
batch_size = x.shape[0]
|
||||
|
||||
# `sample` projections.
|
||||
# `sample` projections
|
||||
query = attn.to_q(x)
|
||||
key = attn.to_k(x)
|
||||
value = attn.to_v(x)
|
||||
|
||||
# apply rotary position embedding
|
||||
if rope is not None:
|
||||
freqs, xpos_scale = rope
|
||||
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||
|
||||
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
||||
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
||||
|
||||
# attention
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
@@ -425,16 +477,59 @@ class AttnProcessor:
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||
if mask is not None:
|
||||
attn_mask = mask
|
||||
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
||||
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
||||
else:
|
||||
attn_mask = None
|
||||
# qk norm
|
||||
if attn.q_norm is not None:
|
||||
query = attn.q_norm(query)
|
||||
if attn.k_norm is not None:
|
||||
key = attn.k_norm(key)
|
||||
|
||||
# apply rotary position embedding
|
||||
if rope is not None:
|
||||
freqs, xpos_scale = rope
|
||||
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||
|
||||
if self.pe_attn_head is not None:
|
||||
pn = self.pe_attn_head
|
||||
query[:, :pn, :, :] = apply_rotary_pos_emb(query[:, :pn, :, :], freqs, q_xpos_scale)
|
||||
key[:, :pn, :, :] = apply_rotary_pos_emb(key[:, :pn, :, :], freqs, k_xpos_scale)
|
||||
else:
|
||||
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
||||
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
||||
|
||||
if self.attn_backend == "torch":
|
||||
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||
if self.attn_mask_enabled and mask is not None:
|
||||
attn_mask = mask
|
||||
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
||||
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
||||
else:
|
||||
attn_mask = None
|
||||
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
||||
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
|
||||
elif self.attn_backend == "flash_attn":
|
||||
query = query.transpose(1, 2) # [b, h, n, d] -> [b, n, h, d]
|
||||
key = key.transpose(1, 2)
|
||||
value = value.transpose(1, 2)
|
||||
if self.attn_mask_enabled and mask is not None:
|
||||
query, indices, q_cu_seqlens, q_max_seqlen_in_batch, _ = unpad_input(query, mask)
|
||||
key, _, k_cu_seqlens, k_max_seqlen_in_batch, _ = unpad_input(key, mask)
|
||||
value, _, _, _, _ = unpad_input(value, mask)
|
||||
x = flash_attn_varlen_func(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
q_cu_seqlens,
|
||||
k_cu_seqlens,
|
||||
q_max_seqlen_in_batch,
|
||||
k_max_seqlen_in_batch,
|
||||
)
|
||||
x = pad_input(x, indices, batch_size, q_max_seqlen_in_batch)
|
||||
x = x.reshape(batch_size, -1, attn.heads * head_dim)
|
||||
else:
|
||||
x = flash_attn_func(query, key, value, dropout_p=0.0, causal=False)
|
||||
x = x.reshape(batch_size, -1, attn.heads * head_dim)
|
||||
|
||||
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
||||
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
x = x.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
@@ -460,9 +555,9 @@ class JointAttnProcessor:
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
x: float["b n d"], # noised input x # noqa: F722
|
||||
c: float["b nt d"] = None, # context c, here text # noqa: F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
x: float["b n d"], # noised input x
|
||||
c: float["b nt d"] = None, # context c, here text
|
||||
mask: bool["b n"] | None = None,
|
||||
rope=None, # rotary position embedding for x
|
||||
c_rope=None, # rotary position embedding for c
|
||||
) -> torch.FloatTensor:
|
||||
@@ -470,16 +565,36 @@ class JointAttnProcessor:
|
||||
|
||||
batch_size = c.shape[0]
|
||||
|
||||
# `sample` projections.
|
||||
# `sample` projections
|
||||
query = attn.to_q(x)
|
||||
key = attn.to_k(x)
|
||||
value = attn.to_v(x)
|
||||
|
||||
# `context` projections.
|
||||
# `context` projections
|
||||
c_query = attn.to_q_c(c)
|
||||
c_key = attn.to_k_c(c)
|
||||
c_value = attn.to_v_c(c)
|
||||
|
||||
# attention
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
c_query = c_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
c_key = c_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
c_value = c_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# qk norm
|
||||
if attn.q_norm is not None:
|
||||
query = attn.q_norm(query)
|
||||
if attn.k_norm is not None:
|
||||
key = attn.k_norm(key)
|
||||
if attn.c_q_norm is not None:
|
||||
c_query = attn.c_q_norm(c_query)
|
||||
if attn.c_k_norm is not None:
|
||||
c_key = attn.c_k_norm(c_key)
|
||||
|
||||
# apply rope for context and noised input independently
|
||||
if rope is not None:
|
||||
freqs, xpos_scale = rope
|
||||
@@ -492,16 +607,10 @@ class JointAttnProcessor:
|
||||
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
||||
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
||||
|
||||
# attention
|
||||
query = torch.cat([query, c_query], dim=1)
|
||||
key = torch.cat([key, c_key], dim=1)
|
||||
value = torch.cat([value, c_value], dim=1)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
# joint attention
|
||||
query = torch.cat([query, c_query], dim=2)
|
||||
key = torch.cat([key, c_key], dim=2)
|
||||
value = torch.cat([value, c_value], dim=2)
|
||||
|
||||
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||
if mask is not None:
|
||||
@@ -540,16 +649,32 @@ class JointAttnProcessor:
|
||||
|
||||
|
||||
class DiTBlock(nn.Module):
|
||||
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
heads,
|
||||
dim_head,
|
||||
ff_mult=4,
|
||||
dropout=0.1,
|
||||
qk_norm=None,
|
||||
pe_attn_head=None,
|
||||
attn_backend="torch", # "torch" or "flash_attn"
|
||||
attn_mask_enabled=True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.attn_norm = AdaLayerNormZero(dim)
|
||||
self.attn_norm = AdaLayerNorm(dim)
|
||||
self.attn = Attention(
|
||||
processor=AttnProcessor(),
|
||||
processor=AttnProcessor(
|
||||
pe_attn_head=pe_attn_head,
|
||||
attn_backend=attn_backend,
|
||||
attn_mask_enabled=attn_mask_enabled,
|
||||
),
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
dropout=dropout,
|
||||
qk_norm=qk_norm,
|
||||
)
|
||||
|
||||
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
@@ -585,26 +710,30 @@ class MMDiTBlock(nn.Module):
|
||||
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
||||
"""
|
||||
|
||||
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
|
||||
def __init__(
|
||||
self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_dim=None, context_pre_only=False, qk_norm=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if context_dim is None:
|
||||
context_dim = dim
|
||||
self.context_pre_only = context_pre_only
|
||||
|
||||
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
|
||||
self.attn_norm_x = AdaLayerNormZero(dim)
|
||||
self.attn_norm_c = AdaLayerNorm_Final(context_dim) if context_pre_only else AdaLayerNorm(context_dim)
|
||||
self.attn_norm_x = AdaLayerNorm(dim)
|
||||
self.attn = Attention(
|
||||
processor=JointAttnProcessor(),
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
dropout=dropout,
|
||||
context_dim=dim,
|
||||
context_dim=context_dim,
|
||||
context_pre_only=context_pre_only,
|
||||
qk_norm=qk_norm,
|
||||
)
|
||||
|
||||
if not context_pre_only:
|
||||
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||
self.ff_norm_c = nn.LayerNorm(context_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_c = FeedForward(dim=context_dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||
else:
|
||||
self.ff_norm_c = None
|
||||
self.ff_c = None
|
||||
@@ -651,7 +780,7 @@ class TimestepEmbedding(nn.Module):
|
||||
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
||||
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
||||
|
||||
def forward(self, timestep: float["b"]): # noqa: F821
|
||||
def forward(self, timestep: float["b"]):
|
||||
time_hidden = self.time_embed(timestep)
|
||||
time_hidden = time_hidden.to(timestep.dtype)
|
||||
time = self.time_mlp(time_hidden) # b d
|
||||
|
||||
@@ -19,6 +19,7 @@ from f5_tts.model import CFM
|
||||
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
||||
from f5_tts.model.utils import default, exists
|
||||
|
||||
|
||||
# trainer
|
||||
|
||||
|
||||
@@ -32,7 +33,7 @@ class Trainer:
|
||||
save_per_updates=1000,
|
||||
keep_last_n_checkpoints: int = -1, # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
||||
checkpoint_path=None,
|
||||
batch_size=32,
|
||||
batch_size_per_gpu=32,
|
||||
batch_size_type: str = "sample",
|
||||
max_samples=32,
|
||||
grad_accumulation_steps=1,
|
||||
@@ -40,7 +41,7 @@ class Trainer:
|
||||
noise_scheduler: str | None = None,
|
||||
duration_predictor: torch.nn.Module | None = None,
|
||||
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
|
||||
wandb_project="test_e2-tts",
|
||||
wandb_project="test_f5-tts",
|
||||
wandb_run_name="test_run",
|
||||
wandb_resume_id: str = None,
|
||||
log_samples: bool = False,
|
||||
@@ -51,6 +52,7 @@ class Trainer:
|
||||
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
|
||||
is_local_vocoder: bool = False, # use local path vocoder
|
||||
local_vocoder_path: str = "", # local vocoder path
|
||||
model_cfg_dict: dict = dict(), # training config
|
||||
):
|
||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
||||
|
||||
@@ -72,21 +74,23 @@ class Trainer:
|
||||
else:
|
||||
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
||||
|
||||
self.accelerator.init_trackers(
|
||||
project_name=wandb_project,
|
||||
init_kwargs=init_kwargs,
|
||||
config={
|
||||
if not model_cfg_dict:
|
||||
model_cfg_dict = {
|
||||
"epochs": epochs,
|
||||
"learning_rate": learning_rate,
|
||||
"num_warmup_updates": num_warmup_updates,
|
||||
"batch_size": batch_size,
|
||||
"batch_size_per_gpu": batch_size_per_gpu,
|
||||
"batch_size_type": batch_size_type,
|
||||
"max_samples": max_samples,
|
||||
"grad_accumulation_steps": grad_accumulation_steps,
|
||||
"max_grad_norm": max_grad_norm,
|
||||
"gpus": self.accelerator.num_processes,
|
||||
"noise_scheduler": noise_scheduler,
|
||||
},
|
||||
}
|
||||
model_cfg_dict["gpus"] = self.accelerator.num_processes
|
||||
self.accelerator.init_trackers(
|
||||
project_name=wandb_project,
|
||||
init_kwargs=init_kwargs,
|
||||
config=model_cfg_dict,
|
||||
)
|
||||
|
||||
elif self.logger == "tensorboard":
|
||||
@@ -111,9 +115,9 @@ class Trainer:
|
||||
self.save_per_updates = save_per_updates
|
||||
self.keep_last_n_checkpoints = keep_last_n_checkpoints
|
||||
self.last_per_updates = default(last_per_updates, save_per_updates)
|
||||
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts")
|
||||
self.checkpoint_path = default(checkpoint_path, "ckpts/test_f5-tts")
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.batch_size_per_gpu = batch_size_per_gpu
|
||||
self.batch_size_type = batch_size_type
|
||||
self.max_samples = max_samples
|
||||
self.grad_accumulation_steps = grad_accumulation_steps
|
||||
@@ -145,7 +149,7 @@ class Trainer:
|
||||
if self.is_main:
|
||||
checkpoint = dict(
|
||||
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
|
||||
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
|
||||
optimizer_state_dict=self.optimizer.state_dict(),
|
||||
ema_model_state_dict=self.ema_model.state_dict(),
|
||||
scheduler_state_dict=self.scheduler.state_dict(),
|
||||
update=update,
|
||||
@@ -179,7 +183,7 @@ class Trainer:
|
||||
if (
|
||||
not exists(self.checkpoint_path)
|
||||
or not os.path.exists(self.checkpoint_path)
|
||||
or not any(filename.endswith(".pt") for filename in os.listdir(self.checkpoint_path))
|
||||
or not any(filename.endswith((".pt", ".safetensors")) for filename in os.listdir(self.checkpoint_path))
|
||||
):
|
||||
return 0
|
||||
|
||||
@@ -191,7 +195,7 @@ class Trainer:
|
||||
all_checkpoints = [
|
||||
f
|
||||
for f in os.listdir(self.checkpoint_path)
|
||||
if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith(".pt")
|
||||
if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith((".pt", ".safetensors"))
|
||||
]
|
||||
|
||||
# First try to find regular training checkpoints
|
||||
@@ -205,8 +209,16 @@ class Trainer:
|
||||
# If no training checkpoints, use pretrained model
|
||||
latest_checkpoint = next(f for f in all_checkpoints if f.startswith("pretrained_"))
|
||||
|
||||
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
|
||||
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu")
|
||||
if latest_checkpoint.endswith(".safetensors"): # always a pretrained checkpoint
|
||||
from safetensors.torch import load_file
|
||||
|
||||
checkpoint = load_file(f"{self.checkpoint_path}/{latest_checkpoint}", device="cpu")
|
||||
checkpoint = {"ema_model_state_dict": checkpoint}
|
||||
elif latest_checkpoint.endswith(".pt"):
|
||||
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
|
||||
checkpoint = torch.load(
|
||||
f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu"
|
||||
)
|
||||
|
||||
# patch for backward compatibility, 305e3ea
|
||||
for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
|
||||
@@ -230,7 +242,7 @@ class Trainer:
|
||||
del checkpoint["model_state_dict"][key]
|
||||
|
||||
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
|
||||
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"])
|
||||
self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
|
||||
if self.scheduler:
|
||||
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
|
||||
update = checkpoint["update"]
|
||||
@@ -271,7 +283,7 @@ class Trainer:
|
||||
num_workers=num_workers,
|
||||
pin_memory=True,
|
||||
persistent_workers=True,
|
||||
batch_size=self.batch_size,
|
||||
batch_size=self.batch_size_per_gpu,
|
||||
shuffle=True,
|
||||
generator=generator,
|
||||
)
|
||||
@@ -280,10 +292,10 @@ class Trainer:
|
||||
sampler = SequentialSampler(train_dataset)
|
||||
batch_sampler = DynamicBatchSampler(
|
||||
sampler,
|
||||
self.batch_size,
|
||||
self.batch_size_per_gpu,
|
||||
max_samples=self.max_samples,
|
||||
random_seed=resumable_with_seed, # This enables reproducible shuffling
|
||||
drop_last=False,
|
||||
drop_residual=False,
|
||||
)
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
@@ -339,7 +351,7 @@ class Trainer:
|
||||
|
||||
progress_bar = tqdm(
|
||||
range(math.ceil(len(train_dataloader) / self.grad_accumulation_steps)),
|
||||
desc=f"Epoch {epoch+1}/{self.epochs}",
|
||||
desc=f"Epoch {epoch + 1}/{self.epochs}",
|
||||
unit="update",
|
||||
disable=not self.accelerator.is_local_main_process,
|
||||
initial=progress_bar_initial,
|
||||
@@ -384,6 +396,9 @@ class Trainer:
|
||||
self.writer.add_scalar("loss", loss.item(), global_update)
|
||||
self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_update)
|
||||
|
||||
if global_update % self.last_per_updates == 0 and self.accelerator.sync_gradients:
|
||||
self.save_checkpoint(global_update, last=True)
|
||||
|
||||
if global_update % self.save_per_updates == 0 and self.accelerator.sync_gradients:
|
||||
self.save_checkpoint(global_update)
|
||||
|
||||
@@ -417,9 +432,7 @@ class Trainer:
|
||||
torchaudio.save(
|
||||
f"{log_samples_path}/update_{global_update}_ref.wav", ref_audio, target_sample_rate
|
||||
)
|
||||
|
||||
if global_update % self.last_per_updates == 0 and self.accelerator.sync_gradients:
|
||||
self.save_checkpoint(global_update, last=True)
|
||||
self.model.train()
|
||||
|
||||
self.save_checkpoint(global_update, last=True)
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
# ruff: noqa: F722 F821
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
@@ -5,11 +7,10 @@ import random
|
||||
from collections import defaultdict
|
||||
from importlib.resources import files
|
||||
|
||||
import torch
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
import jieba
|
||||
from pypinyin import lazy_pinyin, Style
|
||||
import torch
|
||||
from pypinyin import Style, lazy_pinyin
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
# seed everything
|
||||
@@ -36,10 +37,20 @@ def default(v, d):
|
||||
return v if exists(v) else d
|
||||
|
||||
|
||||
def is_package_available(package_name: str) -> bool:
|
||||
try:
|
||||
import importlib
|
||||
|
||||
package_exists = importlib.util.find_spec(package_name) is not None
|
||||
return package_exists
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
# tensor helpers
|
||||
|
||||
|
||||
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821
|
||||
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]:
|
||||
if not exists(length):
|
||||
length = t.amax()
|
||||
|
||||
@@ -47,7 +58,7 @@ def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa
|
||||
return seq[None, :] < t[:, None]
|
||||
|
||||
|
||||
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821
|
||||
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]):
|
||||
max_seq_len = seq_len.max().item()
|
||||
seq = torch.arange(max_seq_len, device=start.device).long()
|
||||
start_mask = seq[None, :] >= start[:, None]
|
||||
@@ -55,7 +66,7 @@ def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"
|
||||
return start_mask & end_mask
|
||||
|
||||
|
||||
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821
|
||||
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]):
|
||||
lengths = (frac_lengths * seq_len).long()
|
||||
max_start = seq_len - lengths
|
||||
|
||||
@@ -66,7 +77,7 @@ def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa
|
||||
return mask_from_start_end_indices(seq_len, start, end)
|
||||
|
||||
|
||||
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
|
||||
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]:
|
||||
if not exists(mask):
|
||||
return t.mean(dim=1)
|
||||
|
||||
@@ -78,7 +89,7 @@ def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d
|
||||
|
||||
|
||||
# simple utf-8 tokenizer, since paper went character based
|
||||
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
||||
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]:
|
||||
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
|
||||
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
||||
return text
|
||||
@@ -89,7 +100,7 @@ def list_str_to_idx(
|
||||
text: list[str] | list[list[str]],
|
||||
vocab_char_map: dict[str, int], # {char: idx}
|
||||
padding_value=-1,
|
||||
) -> int["b nt"]: # noqa: F722
|
||||
) -> int["b nt"]:
|
||||
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
||||
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
||||
return text
|
||||
@@ -133,11 +144,12 @@ def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
||||
|
||||
# convert char to pinyin
|
||||
|
||||
jieba.initialize()
|
||||
print("Word segmentation module jieba initialized.\n")
|
||||
|
||||
|
||||
def convert_char_to_pinyin(text_list, polyphone=True):
|
||||
if jieba.dt.initialized is False:
|
||||
jieba.default_logger.setLevel(50) # CRITICAL
|
||||
jieba.initialize()
|
||||
|
||||
final_text_list = []
|
||||
custom_trans = str.maketrans(
|
||||
{";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"}
|
||||
@@ -189,3 +201,22 @@ def repetition_found(text, length=2, tolerance=10):
|
||||
if count > tolerance:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
# get the empirically pruned step for sampling
|
||||
|
||||
|
||||
def get_epss_timesteps(n, device, dtype):
|
||||
dt = 1 / 32
|
||||
predefined_timesteps = {
|
||||
5: [0, 2, 4, 8, 16, 32],
|
||||
6: [0, 2, 4, 6, 8, 16, 32],
|
||||
7: [0, 2, 4, 6, 8, 16, 24, 32],
|
||||
10: [0, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32],
|
||||
12: [0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32],
|
||||
16: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32],
|
||||
}
|
||||
t = predefined_timesteps.get(n, [])
|
||||
if not t:
|
||||
return torch.linspace(0, 1, n + 1, device=device, dtype=dtype)
|
||||
return dt * torch.tensor(t, device=device, dtype=dtype)
|
||||
|
||||
3
src/f5_tts/runtime/triton_trtllm/.gitignore
vendored
Normal file
3
src/f5_tts/runtime/triton_trtllm/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
# runtime/triton_trtllm related
|
||||
model.cache
|
||||
model_repo/
|
||||
3
src/f5_tts/runtime/triton_trtllm/Dockerfile.server
Normal file
3
src/f5_tts/runtime/triton_trtllm/Dockerfile.server
Normal file
@@ -0,0 +1,3 @@
|
||||
FROM nvcr.io/nvidia/tritonserver:24.12-py3
|
||||
RUN pip install tritonclient[grpc] tensorrt-llm==0.16.0 torchaudio==2.5.1 jieba pypinyin librosa vocos
|
||||
WORKDIR /workspace
|
||||
79
src/f5_tts/runtime/triton_trtllm/README.md
Normal file
79
src/f5_tts/runtime/triton_trtllm/README.md
Normal file
@@ -0,0 +1,79 @@
|
||||
## Triton Inference Serving Best Practice for F5-TTS
|
||||
|
||||
### Setup
|
||||
#### Option 1: Quick Start
|
||||
```sh
|
||||
# Directly launch the service using docker compose
|
||||
MODEL=F5TTS_v1_Base docker compose up
|
||||
```
|
||||
|
||||
#### Option 2: Build from scratch
|
||||
```sh
|
||||
# Build the docker image
|
||||
docker build . -f Dockerfile.server -t soar97/triton-f5-tts:24.12
|
||||
|
||||
# Create Docker Container
|
||||
your_mount_dir=/mnt:/mnt
|
||||
docker run -it --name "f5-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-f5-tts:24.12
|
||||
```
|
||||
|
||||
### Build TensorRT-LLM Engines and Launch Server
|
||||
Inside docker container, we would follow the official guide of TensorRT-LLM to build qwen and whisper TensorRT-LLM engines. See [here](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/models/core/whisper).
|
||||
```sh
|
||||
# F5TTS_v1_Base | F5TTS_Base | F5TTS_v1_Small | F5TTS_Small
|
||||
bash run.sh 0 4 F5TTS_v1_Base
|
||||
```
|
||||
> [!NOTE]
|
||||
> If use custom checkpoint, set `ckpt_file` and `vocab_file` in `run.sh`.
|
||||
> Remember to used matched model version (`F5TTS_v1_*` for v1, `F5TTS_*` for v0).
|
||||
>
|
||||
> If use checkpoint of different structure, see `scripts/convert_checkpoint.py`, and perform modification if necessary.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> If train or finetune with fp32, add `--dtype float32` flag when converting checkpoint in `run.sh` phase 1.
|
||||
|
||||
### HTTP Client
|
||||
```sh
|
||||
python3 client_http.py
|
||||
```
|
||||
|
||||
### Benchmarking
|
||||
#### Using Client-Server Mode
|
||||
```sh
|
||||
# bash run.sh 5 5 F5TTS_v1_Base
|
||||
num_task=2
|
||||
python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts
|
||||
```
|
||||
|
||||
#### Using Offline TRT-LLM Mode
|
||||
```sh
|
||||
# bash run.sh 7 7 F5TTS_v1_Base
|
||||
batch_size=1
|
||||
split_name=wenetspeech4tts
|
||||
backend_type=trt
|
||||
log_dir=./tests/benchmark_batch_size_${batch_size}_${split_name}_${backend_type}
|
||||
rm -r $log_dir
|
||||
torchrun --nproc_per_node=1 \
|
||||
benchmark.py --output-dir $log_dir \
|
||||
--batch-size $batch_size \
|
||||
--enable-warmup \
|
||||
--split-name $split_name \
|
||||
--model-path $ckpt_file \
|
||||
--vocab-file $vocab_file \
|
||||
--vocoder-trt-engine-path $VOCODER_TRT_ENGINE_PATH \
|
||||
--backend-type $backend_type \
|
||||
--tllm-model-dir $TRTLLM_ENGINE_DIR || exit 1
|
||||
```
|
||||
|
||||
### Benchmark Results
|
||||
Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE.
|
||||
|
||||
| Model | Concurrency | Avg Latency | RTF | Mode |
|
||||
|---------------------|----------------|-------------|--------|-----------------|
|
||||
| F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server |
|
||||
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM |
|
||||
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch |
|
||||
|
||||
### Credits
|
||||
1. [Yuekai Zhang](https://github.com/yuekaizhang)
|
||||
2. [F5-TTS-TRTLLM](https://github.com/Bigfishering/f5-tts-trtllm)
|
||||
475
src/f5_tts/runtime/triton_trtllm/benchmark.py
Normal file
475
src/f5_tts/runtime/triton_trtllm/benchmark.py
Normal file
@@ -0,0 +1,475 @@
|
||||
# Copyright (c) 2024 Tsinghua Univ. (authors: Xingchen Song)
|
||||
# 2025 (authors: Yuekai Zhang)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from https://github.com/xingchensong/S3Tokenizer/blob/main/s3tokenizer/cli.py
|
||||
""" Example Usage
|
||||
torchrun --nproc_per_node=1 \
|
||||
benchmark.py --output-dir $log_dir \
|
||||
--batch-size $batch_size \
|
||||
--enable-warmup \
|
||||
--split-name $split_name \
|
||||
--model-path $CKPT_DIR/$model/model_1200000.pt \
|
||||
--vocab-file $CKPT_DIR/$model/vocab.txt \
|
||||
--vocoder-trt-engine-path $vocoder_trt_engine_path \
|
||||
--backend-type $backend_type \
|
||||
--tllm-model-dir $TRTLLM_ENGINE_DIR || exit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import importlib
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
import datasets
|
||||
import tensorrt as trt
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from datasets import load_dataset
|
||||
from huggingface_hub import hf_hub_download
|
||||
from tensorrt_llm._utils import trt_dtype_to_torch
|
||||
from tensorrt_llm.logger import logger
|
||||
from tensorrt_llm.runtime.session import Session, TensorInfo
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
from tqdm import tqdm
|
||||
from vocos import Vocos
|
||||
|
||||
|
||||
sys.path.append(f"{os.path.dirname(os.path.abspath(__file__))}/../../../../src/")
|
||||
|
||||
from f5_tts.eval.utils_eval import padded_mel_batch
|
||||
from f5_tts.model.modules import get_vocos_mel_spectrogram
|
||||
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer, list_str_to_idx
|
||||
|
||||
|
||||
F5TTS = importlib.import_module("model_repo_f5_tts.f5_tts.1.f5_tts_trtllm").F5TTS
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description="extract speech code")
|
||||
parser.add_argument(
|
||||
"--split-name",
|
||||
type=str,
|
||||
default="wenetspeech4tts",
|
||||
choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"],
|
||||
help="huggingface dataset split name",
|
||||
)
|
||||
parser.add_argument("--output-dir", required=True, type=str, help="dir to save result")
|
||||
parser.add_argument(
|
||||
"--vocab-file",
|
||||
required=True,
|
||||
type=str,
|
||||
help="vocab file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
required=True,
|
||||
type=str,
|
||||
help="model path, to load text embedding",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tllm-model-dir",
|
||||
required=True,
|
||||
type=str,
|
||||
help="tllm model dir",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
required=True,
|
||||
type=int,
|
||||
help="batch size (per-device) for inference",
|
||||
)
|
||||
parser.add_argument("--num-workers", type=int, default=0, help="workers for dataloader")
|
||||
parser.add_argument("--prefetch", type=int, default=None, help="prefetch for dataloader")
|
||||
parser.add_argument(
|
||||
"--vocoder",
|
||||
default="vocos",
|
||||
type=str,
|
||||
help="vocoder name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocoder-trt-engine-path",
|
||||
default=None,
|
||||
type=str,
|
||||
help="vocoder trt engine path",
|
||||
)
|
||||
parser.add_argument("--enable-warmup", action="store_true")
|
||||
parser.add_argument("--remove-input-padding", action="store_true")
|
||||
parser.add_argument("--use-perf", action="store_true", help="use nvtx to record performance")
|
||||
parser.add_argument("--backend-type", type=str, default="triton", choices=["trt", "pytorch"], help="backend type")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def data_collator(batch, vocab_char_map, device="cuda", use_perf=False):
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_push("data_collator")
|
||||
target_sample_rate = 24000
|
||||
target_rms = 0.1
|
||||
(
|
||||
ids,
|
||||
ref_rms_list,
|
||||
ref_mel_list,
|
||||
ref_mel_len_list,
|
||||
estimated_reference_target_mel_len,
|
||||
reference_target_texts_list,
|
||||
) = (
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
)
|
||||
for i, item in enumerate(batch):
|
||||
item_id, prompt_text, target_text = (
|
||||
item["id"],
|
||||
item["prompt_text"],
|
||||
item["target_text"],
|
||||
)
|
||||
ids.append(item_id)
|
||||
reference_target_texts_list.append(prompt_text + target_text)
|
||||
|
||||
ref_audio_org, ref_sr = (
|
||||
item["prompt_audio"]["array"],
|
||||
item["prompt_audio"]["sampling_rate"],
|
||||
)
|
||||
ref_audio_org = torch.from_numpy(ref_audio_org).unsqueeze(0).float()
|
||||
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio_org)))
|
||||
ref_rms_list.append(ref_rms)
|
||||
if ref_rms < target_rms:
|
||||
ref_audio_org = ref_audio_org * target_rms / ref_rms
|
||||
|
||||
if ref_sr != target_sample_rate:
|
||||
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
|
||||
ref_audio = resampler(ref_audio_org)
|
||||
else:
|
||||
ref_audio = ref_audio_org
|
||||
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_push(f"mel_spectrogram {i}")
|
||||
ref_audio = ref_audio.to("cuda")
|
||||
ref_mel = get_vocos_mel_spectrogram(ref_audio).squeeze(0)
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
ref_mel_len = ref_mel.shape[-1]
|
||||
assert ref_mel.shape[0] == 100
|
||||
|
||||
ref_mel_list.append(ref_mel)
|
||||
ref_mel_len_list.append(ref_mel_len)
|
||||
|
||||
estimated_reference_target_mel_len.append(
|
||||
int(ref_mel_len * (1 + len(target_text.encode("utf-8")) / len(prompt_text.encode("utf-8"))))
|
||||
)
|
||||
|
||||
ref_mel_batch = padded_mel_batch(ref_mel_list)
|
||||
ref_mel_len_batch = torch.LongTensor(ref_mel_len_list)
|
||||
|
||||
pinyin_list = convert_char_to_pinyin(reference_target_texts_list, polyphone=True)
|
||||
text_pad_sequence = list_str_to_idx(pinyin_list, vocab_char_map)
|
||||
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
return {
|
||||
"ids": ids,
|
||||
"ref_rms_list": ref_rms_list,
|
||||
"ref_mel_batch": ref_mel_batch,
|
||||
"ref_mel_len_batch": ref_mel_len_batch,
|
||||
"text_pad_sequence": text_pad_sequence,
|
||||
"estimated_reference_target_mel_len": estimated_reference_target_mel_len,
|
||||
}
|
||||
|
||||
|
||||
def init_distributed():
|
||||
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
rank = int(os.environ.get("RANK", 0))
|
||||
print(
|
||||
"Inference on multiple gpus, this gpu {}".format(local_rank)
|
||||
+ ", rank {}, world_size {}".format(rank, world_size)
|
||||
)
|
||||
torch.cuda.set_device(local_rank)
|
||||
# Initialize process group with explicit device IDs
|
||||
dist.init_process_group(
|
||||
"nccl",
|
||||
)
|
||||
return world_size, local_rank, rank
|
||||
|
||||
|
||||
def load_vocoder(
|
||||
vocoder_name="vocos", is_local=False, local_path="", device="cuda", hf_cache_dir=None, vocoder_trt_engine_path=None
|
||||
):
|
||||
if vocoder_name == "vocos":
|
||||
if vocoder_trt_engine_path is not None:
|
||||
vocoder = VocosTensorRT(engine_path=vocoder_trt_engine_path)
|
||||
else:
|
||||
# vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
|
||||
if is_local:
|
||||
print(f"Load vocos from local path {local_path}")
|
||||
config_path = f"{local_path}/config.yaml"
|
||||
model_path = f"{local_path}/pytorch_model.bin"
|
||||
else:
|
||||
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
||||
repo_id = "charactr/vocos-mel-24khz"
|
||||
config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
|
||||
model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
|
||||
vocoder = Vocos.from_hparams(config_path)
|
||||
state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
|
||||
from vocos.feature_extractors import EncodecFeatures
|
||||
|
||||
if isinstance(vocoder.feature_extractor, EncodecFeatures):
|
||||
encodec_parameters = {
|
||||
"feature_extractor.encodec." + key: value
|
||||
for key, value in vocoder.feature_extractor.encodec.state_dict().items()
|
||||
}
|
||||
state_dict.update(encodec_parameters)
|
||||
vocoder.load_state_dict(state_dict)
|
||||
vocoder = vocoder.eval().to(device)
|
||||
elif vocoder_name == "bigvgan":
|
||||
raise NotImplementedError("BigVGAN is not implemented yet")
|
||||
return vocoder
|
||||
|
||||
|
||||
class VocosTensorRT:
|
||||
def __init__(self, engine_path="./vocos_vocoder.plan", stream=None):
|
||||
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
|
||||
trt.init_libnvinfer_plugins(TRT_LOGGER, namespace="")
|
||||
logger.info(f"Loading vocoder engine from {engine_path}")
|
||||
self.engine_path = engine_path
|
||||
with open(engine_path, "rb") as f:
|
||||
engine_buffer = f.read()
|
||||
self.session = Session.from_serialized_engine(engine_buffer)
|
||||
self.stream = stream if stream is not None else torch.cuda.current_stream().cuda_stream
|
||||
|
||||
def decode(self, mels):
|
||||
mels = mels.contiguous()
|
||||
inputs = {"mel": mels}
|
||||
output_info = self.session.infer_shapes([TensorInfo("mel", trt.DataType.FLOAT, mels.shape)])
|
||||
outputs = {
|
||||
t.name: torch.empty(tuple(t.shape), dtype=trt_dtype_to_torch(t.dtype), device="cuda") for t in output_info
|
||||
}
|
||||
ok = self.session.run(inputs, outputs, self.stream)
|
||||
|
||||
assert ok, "Runtime execution failed for vae session"
|
||||
|
||||
samples = outputs["waveform"]
|
||||
return samples
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
world_size, local_rank, rank = init_distributed()
|
||||
device = torch.device(f"cuda:{local_rank}")
|
||||
|
||||
vocab_char_map, vocab_size = get_tokenizer(args.vocab_file, "custom")
|
||||
|
||||
tllm_model_dir = args.tllm_model_dir
|
||||
with open(os.path.join(tllm_model_dir, "config.json")) as f:
|
||||
tllm_model_config = json.load(f)
|
||||
if args.backend_type == "trt":
|
||||
model = F5TTS(
|
||||
tllm_model_config,
|
||||
debug_mode=False,
|
||||
tllm_model_dir=tllm_model_dir,
|
||||
model_path=args.model_path,
|
||||
vocab_size=vocab_size,
|
||||
)
|
||||
elif args.backend_type == "pytorch":
|
||||
from f5_tts.infer.utils_infer import load_model
|
||||
from f5_tts.model import DiT
|
||||
|
||||
pretrained_config = tllm_model_config["pretrained_config"]
|
||||
pt_model_config = dict(
|
||||
dim=pretrained_config["hidden_size"],
|
||||
depth=pretrained_config["num_hidden_layers"],
|
||||
heads=pretrained_config["num_attention_heads"],
|
||||
ff_mult=pretrained_config["ff_mult"],
|
||||
text_dim=pretrained_config["text_dim"],
|
||||
text_mask_padding=pretrained_config["text_mask_padding"],
|
||||
conv_layers=pretrained_config["conv_layers"],
|
||||
pe_attn_head=pretrained_config["pe_attn_head"],
|
||||
# attn_backend="flash_attn",
|
||||
# attn_mask_enabled=True,
|
||||
)
|
||||
model = load_model(DiT, pt_model_config, args.model_path)
|
||||
|
||||
vocoder = load_vocoder(
|
||||
vocoder_name=args.vocoder, device=device, vocoder_trt_engine_path=args.vocoder_trt_engine_path
|
||||
)
|
||||
|
||||
dataset = load_dataset(
|
||||
"yuekai/seed_tts",
|
||||
split=args.split_name,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
|
||||
def add_estimated_duration(example):
|
||||
prompt_audio_len = example["prompt_audio"]["array"].shape[0]
|
||||
scale_factor = 1 + len(example["target_text"]) / len(example["prompt_text"])
|
||||
estimated_duration = prompt_audio_len * scale_factor
|
||||
example["estimated_duration"] = estimated_duration / example["prompt_audio"]["sampling_rate"]
|
||||
return example
|
||||
|
||||
dataset = dataset.map(add_estimated_duration)
|
||||
dataset = dataset.sort("estimated_duration", reverse=True)
|
||||
if args.use_perf:
|
||||
# dataset_list = [dataset.select(range(1)) for i in range(16)] # seq_len 1000
|
||||
dataset_list_short = [dataset.select([24]) for i in range(8)] # seq_len 719
|
||||
# dataset_list_long = [dataset.select([23]) for i in range(8)] # seq_len 2002
|
||||
# dataset = datasets.concatenate_datasets(dataset_list_short + dataset_list_long)
|
||||
dataset = datasets.concatenate_datasets(dataset_list_short)
|
||||
if world_size > 1:
|
||||
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
|
||||
else:
|
||||
# This would disable shuffling
|
||||
sampler = None
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=args.batch_size,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
num_workers=args.num_workers,
|
||||
prefetch_factor=args.prefetch,
|
||||
collate_fn=lambda x: data_collator(x, vocab_char_map, use_perf=args.use_perf),
|
||||
)
|
||||
|
||||
total_steps = len(dataset)
|
||||
|
||||
if args.enable_warmup:
|
||||
for batch in dataloader:
|
||||
ref_mels, ref_mel_lens = batch["ref_mel_batch"].to(device), batch["ref_mel_len_batch"].to(device)
|
||||
text_pad_seq = batch["text_pad_sequence"].to(device)
|
||||
total_mel_lens = batch["estimated_reference_target_mel_len"]
|
||||
cond_pad_seq = F.pad(ref_mels, (0, 0, 0, max(total_mel_lens) - ref_mels.shape[1], 0, 0))
|
||||
if args.backend_type == "trt":
|
||||
_ = model.sample(
|
||||
text_pad_seq,
|
||||
cond_pad_seq,
|
||||
ref_mel_lens,
|
||||
total_mel_lens,
|
||||
remove_input_padding=args.remove_input_padding,
|
||||
)
|
||||
elif args.backend_type == "pytorch":
|
||||
total_mel_lens = torch.tensor(total_mel_lens, device=device)
|
||||
with torch.inference_mode():
|
||||
generated, _ = model.sample(
|
||||
cond=ref_mels,
|
||||
text=text_pad_seq,
|
||||
duration=total_mel_lens,
|
||||
steps=32,
|
||||
cfg_strength=2.0,
|
||||
sway_sampling_coef=-1,
|
||||
)
|
||||
|
||||
if rank == 0:
|
||||
progress_bar = tqdm(total=total_steps, desc="Processing", unit="wavs")
|
||||
|
||||
decoding_time = 0
|
||||
vocoder_time = 0
|
||||
total_duration = 0
|
||||
if args.use_perf:
|
||||
torch.cuda.cudart().cudaProfilerStart()
|
||||
total_decoding_time = time.time()
|
||||
for batch in dataloader:
|
||||
if args.use_perf:
|
||||
torch.cuda.nvtx.range_push("data sample")
|
||||
ref_mels, ref_mel_lens = batch["ref_mel_batch"].to(device), batch["ref_mel_len_batch"].to(device)
|
||||
text_pad_seq = batch["text_pad_sequence"].to(device)
|
||||
total_mel_lens = batch["estimated_reference_target_mel_len"]
|
||||
cond_pad_seq = F.pad(ref_mels, (0, 0, 0, max(total_mel_lens) - ref_mels.shape[1], 0, 0))
|
||||
if args.use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
if args.backend_type == "trt":
|
||||
generated, cost_time = model.sample(
|
||||
text_pad_seq,
|
||||
cond_pad_seq,
|
||||
ref_mel_lens,
|
||||
total_mel_lens,
|
||||
remove_input_padding=args.remove_input_padding,
|
||||
use_perf=args.use_perf,
|
||||
)
|
||||
elif args.backend_type == "pytorch":
|
||||
total_mel_lens = torch.tensor(total_mel_lens, device=device)
|
||||
with torch.inference_mode():
|
||||
start_time = time.time()
|
||||
generated, _ = model.sample(
|
||||
cond=ref_mels,
|
||||
text=text_pad_seq,
|
||||
duration=total_mel_lens,
|
||||
lens=ref_mel_lens,
|
||||
steps=32,
|
||||
cfg_strength=2.0,
|
||||
sway_sampling_coef=-1,
|
||||
)
|
||||
cost_time = time.time() - start_time
|
||||
decoding_time += cost_time
|
||||
vocoder_start_time = time.time()
|
||||
target_rms = 0.1
|
||||
target_sample_rate = 24000
|
||||
for i, gen in enumerate(generated):
|
||||
gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
|
||||
gen_mel_spec = gen.permute(0, 2, 1).to(torch.float32)
|
||||
if args.vocoder == "vocos":
|
||||
if args.use_perf:
|
||||
torch.cuda.nvtx.range_push("vocoder decode")
|
||||
generated_wave = vocoder.decode(gen_mel_spec).cpu()
|
||||
if args.use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
else:
|
||||
generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()
|
||||
|
||||
if batch["ref_rms_list"][i] < target_rms:
|
||||
generated_wave = generated_wave * batch["ref_rms_list"][i] / target_rms
|
||||
|
||||
utt = batch["ids"][i]
|
||||
torchaudio.save(
|
||||
f"{args.output_dir}/{utt}.wav",
|
||||
generated_wave,
|
||||
target_sample_rate,
|
||||
)
|
||||
total_duration += generated_wave.shape[1] / target_sample_rate
|
||||
vocoder_time += time.time() - vocoder_start_time
|
||||
if rank == 0:
|
||||
progress_bar.update(world_size * len(batch["ids"]))
|
||||
total_decoding_time = time.time() - total_decoding_time
|
||||
if rank == 0:
|
||||
progress_bar.close()
|
||||
rtf = total_decoding_time / total_duration
|
||||
s = f"RTF: {rtf:.4f}\n"
|
||||
s += f"total_duration: {total_duration:.3f} seconds\n"
|
||||
s += f"({total_duration / 3600:.2f} hours)\n"
|
||||
s += f"DiT time: {decoding_time:.3f} seconds ({decoding_time / 3600:.2f} hours)\n"
|
||||
s += f"Vocoder time: {vocoder_time:.3f} seconds ({vocoder_time / 3600:.2f} hours)\n"
|
||||
s += f"total decoding time: {total_decoding_time:.3f} seconds ({total_decoding_time / 3600:.2f} hours)\n"
|
||||
s += f"batch size: {args.batch_size}\n"
|
||||
print(s)
|
||||
|
||||
with open(f"{args.output_dir}/rtf.txt", "w") as f:
|
||||
f.write(s)
|
||||
|
||||
dist.barrier()
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
459
src/f5_tts/runtime/triton_trtllm/client_grpc.py
Normal file
459
src/f5_tts/runtime/triton_trtllm/client_grpc.py
Normal file
@@ -0,0 +1,459 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# 2023 Nvidia (authors: Yuekai Zhang)
|
||||
# 2023 Recurrent.ai (authors: Songtao Shi)
|
||||
# See LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script supports to load dataset from huggingface and sends it to the server
|
||||
for decoding, in parallel.
|
||||
|
||||
Usage:
|
||||
num_task=2
|
||||
|
||||
# For offline F5-TTS
|
||||
python3 client_grpc.py \
|
||||
--server-addr localhost \
|
||||
--model-name f5_tts \
|
||||
--num-tasks $num_task \
|
||||
--huggingface-dataset yuekai/seed_tts \
|
||||
--split-name test_zh \
|
||||
--log-dir ./log_concurrent_tasks_${num_task}
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import types
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import tritonclient
|
||||
import tritonclient.grpc.aio as grpcclient
|
||||
from tritonclient.utils import np_to_triton_dtype
|
||||
|
||||
|
||||
def write_triton_stats(stats, summary_file):
|
||||
with open(summary_file, "w") as summary_f:
|
||||
model_stats = stats["model_stats"]
|
||||
# write a note, the log is from triton_client.get_inference_statistics(), to better human readability
|
||||
summary_f.write(
|
||||
"The log is parsing from triton_client.get_inference_statistics(), to better human readability. \n"
|
||||
)
|
||||
summary_f.write("To learn more about the log, please refer to: \n")
|
||||
summary_f.write("1. https://github.com/triton-inference-server/server/blob/main/docs/user_guide/metrics.md \n")
|
||||
summary_f.write("2. https://github.com/triton-inference-server/server/issues/5374 \n\n")
|
||||
summary_f.write(
|
||||
"To better improve throughput, we always would like let requests wait in the queue for a while, and then execute them with a larger batch size. \n"
|
||||
)
|
||||
summary_f.write(
|
||||
"However, there is a trade-off between the increased queue time and the increased batch size. \n"
|
||||
)
|
||||
summary_f.write(
|
||||
"You may change 'max_queue_delay_microseconds' and 'preferred_batch_size' in the model configuration file to achieve this. \n"
|
||||
)
|
||||
summary_f.write(
|
||||
"See https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#delayed-batching for more details. \n\n"
|
||||
)
|
||||
for model_state in model_stats:
|
||||
if "last_inference" not in model_state:
|
||||
continue
|
||||
summary_f.write(f"model name is {model_state['name']} \n")
|
||||
model_inference_stats = model_state["inference_stats"]
|
||||
total_queue_time_s = int(model_inference_stats["queue"]["ns"]) / 1e9
|
||||
total_infer_time_s = int(model_inference_stats["compute_infer"]["ns"]) / 1e9
|
||||
total_input_time_s = int(model_inference_stats["compute_input"]["ns"]) / 1e9
|
||||
total_output_time_s = int(model_inference_stats["compute_output"]["ns"]) / 1e9
|
||||
summary_f.write(
|
||||
f"queue time {total_queue_time_s:<5.2f} s, compute infer time {total_infer_time_s:<5.2f} s, compute input time {total_input_time_s:<5.2f} s, compute output time {total_output_time_s:<5.2f} s \n" # noqa
|
||||
)
|
||||
model_batch_stats = model_state["batch_stats"]
|
||||
for batch in model_batch_stats:
|
||||
batch_size = int(batch["batch_size"])
|
||||
compute_input = batch["compute_input"]
|
||||
compute_output = batch["compute_output"]
|
||||
compute_infer = batch["compute_infer"]
|
||||
batch_count = int(compute_infer["count"])
|
||||
assert compute_infer["count"] == compute_output["count"] == compute_input["count"]
|
||||
compute_infer_time_ms = int(compute_infer["ns"]) / 1e6
|
||||
compute_input_time_ms = int(compute_input["ns"]) / 1e6
|
||||
compute_output_time_ms = int(compute_output["ns"]) / 1e6
|
||||
summary_f.write(
|
||||
f"execuate inference with batch_size {batch_size:<2} total {batch_count:<5} times, total_infer_time {compute_infer_time_ms:<9.2f} ms, avg_infer_time {compute_infer_time_ms:<9.2f}/{batch_count:<5}={compute_infer_time_ms / batch_count:.2f} ms, avg_infer_time_per_sample {compute_infer_time_ms:<9.2f}/{batch_count:<5}/{batch_size}={compute_infer_time_ms / batch_count / batch_size:.2f} ms \n" # noqa
|
||||
)
|
||||
summary_f.write(
|
||||
f"input {compute_input_time_ms:<9.2f} ms, avg {compute_input_time_ms / batch_count:.2f} ms, " # noqa
|
||||
)
|
||||
summary_f.write(
|
||||
f"output {compute_output_time_ms:<9.2f} ms, avg {compute_output_time_ms / batch_count:.2f} ms \n" # noqa
|
||||
)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-addr",
|
||||
type=str,
|
||||
default="localhost",
|
||||
help="Address of the server",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-port",
|
||||
type=int,
|
||||
default=8001,
|
||||
help="Grpc port of the triton server, default is 8001",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--reference-audio",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to a single audio file. It can't be specified at the same time with --manifest-dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--reference-text",
|
||||
type=str,
|
||||
default="",
|
||||
help="",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--target-text",
|
||||
type=str,
|
||||
default="",
|
||||
help="",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--huggingface-dataset",
|
||||
type=str,
|
||||
default="yuekai/seed_tts",
|
||||
help="dataset name in huggingface dataset hub",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--split-name",
|
||||
type=str,
|
||||
default="wenetspeech4tts",
|
||||
choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"],
|
||||
help="dataset split name, default is 'test'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the manifest dir which includes wav.scp trans.txt files.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="f5_tts",
|
||||
help="triton model_repo module name to request",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-tasks",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of concurrent tasks for sending",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log-interval",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Controls how frequently we print the log.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--compute-wer",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True to compute WER.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log-dir",
|
||||
type=str,
|
||||
required=False,
|
||||
default="./tests/client_grpc",
|
||||
help="log directory",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Inference batch_size per request for offline mode.",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def load_audio(wav_path, target_sample_rate=24000):
|
||||
assert target_sample_rate == 24000, "hard coding in server"
|
||||
if isinstance(wav_path, dict):
|
||||
waveform = wav_path["array"]
|
||||
sample_rate = wav_path["sampling_rate"]
|
||||
else:
|
||||
waveform, sample_rate = sf.read(wav_path)
|
||||
if sample_rate != target_sample_rate:
|
||||
from scipy.signal import resample
|
||||
|
||||
waveform = resample(waveform, int(len(waveform) * (target_sample_rate / sample_rate)))
|
||||
return waveform, target_sample_rate
|
||||
|
||||
|
||||
async def send(
|
||||
manifest_item_list: list,
|
||||
name: str,
|
||||
triton_client: tritonclient.grpc.aio.InferenceServerClient,
|
||||
protocol_client: types.ModuleType,
|
||||
log_interval: int,
|
||||
model_name: str,
|
||||
padding_duration: int = None,
|
||||
audio_save_dir: str = "./",
|
||||
save_sample_rate: int = 24000,
|
||||
):
|
||||
total_duration = 0.0
|
||||
latency_data = []
|
||||
task_id = int(name[5:])
|
||||
|
||||
print(f"manifest_item_list: {manifest_item_list}")
|
||||
for i, item in enumerate(manifest_item_list):
|
||||
if i % log_interval == 0:
|
||||
print(f"{name}: {i}/{len(manifest_item_list)}")
|
||||
waveform, sample_rate = load_audio(item["audio_filepath"], target_sample_rate=24000)
|
||||
duration = len(waveform) / sample_rate
|
||||
lengths = np.array([[len(waveform)]], dtype=np.int32)
|
||||
|
||||
reference_text, target_text = item["reference_text"], item["target_text"]
|
||||
|
||||
estimated_target_duration = duration / len(reference_text) * len(target_text)
|
||||
|
||||
if padding_duration:
|
||||
# padding to nearset 10 seconds
|
||||
samples = np.zeros(
|
||||
(
|
||||
1,
|
||||
padding_duration
|
||||
* sample_rate
|
||||
* ((int(estimated_target_duration + duration) // padding_duration) + 1),
|
||||
),
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
samples[0, : len(waveform)] = waveform
|
||||
else:
|
||||
samples = waveform
|
||||
|
||||
samples = samples.reshape(1, -1).astype(np.float32)
|
||||
|
||||
inputs = [
|
||||
protocol_client.InferInput("reference_wav", samples.shape, np_to_triton_dtype(samples.dtype)),
|
||||
protocol_client.InferInput("reference_wav_len", lengths.shape, np_to_triton_dtype(lengths.dtype)),
|
||||
protocol_client.InferInput("reference_text", [1, 1], "BYTES"),
|
||||
protocol_client.InferInput("target_text", [1, 1], "BYTES"),
|
||||
]
|
||||
inputs[0].set_data_from_numpy(samples)
|
||||
inputs[1].set_data_from_numpy(lengths)
|
||||
|
||||
input_data_numpy = np.array([reference_text], dtype=object)
|
||||
input_data_numpy = input_data_numpy.reshape((1, 1))
|
||||
inputs[2].set_data_from_numpy(input_data_numpy)
|
||||
|
||||
input_data_numpy = np.array([target_text], dtype=object)
|
||||
input_data_numpy = input_data_numpy.reshape((1, 1))
|
||||
inputs[3].set_data_from_numpy(input_data_numpy)
|
||||
|
||||
outputs = [protocol_client.InferRequestedOutput("waveform")]
|
||||
|
||||
sequence_id = 100000000 + i + task_id * 10
|
||||
start = time.time()
|
||||
response = await triton_client.infer(model_name, inputs, request_id=str(sequence_id), outputs=outputs)
|
||||
|
||||
audio = response.as_numpy("waveform").reshape(-1)
|
||||
|
||||
end = time.time() - start
|
||||
|
||||
audio_save_path = os.path.join(audio_save_dir, f"{item['target_audio_path']}.wav")
|
||||
sf.write(audio_save_path, audio, save_sample_rate, "PCM_16")
|
||||
|
||||
actual_duration = len(audio) / save_sample_rate
|
||||
latency_data.append((end, actual_duration))
|
||||
total_duration += actual_duration
|
||||
|
||||
return total_duration, latency_data
|
||||
|
||||
|
||||
def load_manifests(manifest_path):
|
||||
with open(manifest_path, "r") as f:
|
||||
manifest_list = []
|
||||
for line in f:
|
||||
assert len(line.strip().split("|")) == 4
|
||||
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
|
||||
utt = Path(utt).stem
|
||||
# gt_wav = os.path.join(os.path.dirname(manifest_path), "wavs", utt + ".wav")
|
||||
if not os.path.isabs(prompt_wav):
|
||||
prompt_wav = os.path.join(os.path.dirname(manifest_path), prompt_wav)
|
||||
manifest_list.append(
|
||||
{
|
||||
"audio_filepath": prompt_wav,
|
||||
"reference_text": prompt_text,
|
||||
"target_text": gt_text,
|
||||
"target_audio_path": utt,
|
||||
}
|
||||
)
|
||||
return manifest_list
|
||||
|
||||
|
||||
def split_data(data, k):
|
||||
n = len(data)
|
||||
if n < k:
|
||||
print(f"Warning: the length of the input list ({n}) is less than k ({k}). Setting k to {n}.")
|
||||
k = n
|
||||
|
||||
quotient = n // k
|
||||
remainder = n % k
|
||||
|
||||
result = []
|
||||
start = 0
|
||||
for i in range(k):
|
||||
if i < remainder:
|
||||
end = start + quotient + 1
|
||||
else:
|
||||
end = start + quotient
|
||||
|
||||
result.append(data[start:end])
|
||||
start = end
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def main():
|
||||
args = get_args()
|
||||
url = f"{args.server_addr}:{args.server_port}"
|
||||
|
||||
triton_client = grpcclient.InferenceServerClient(url=url, verbose=False)
|
||||
protocol_client = grpcclient
|
||||
|
||||
if args.reference_audio:
|
||||
args.num_tasks = 1
|
||||
args.log_interval = 1
|
||||
manifest_item_list = [
|
||||
{
|
||||
"reference_text": args.reference_text,
|
||||
"target_text": args.target_text,
|
||||
"audio_filepath": args.reference_audio,
|
||||
"target_audio_path": "test",
|
||||
}
|
||||
]
|
||||
elif args.huggingface_dataset:
|
||||
import datasets
|
||||
|
||||
dataset = datasets.load_dataset(
|
||||
args.huggingface_dataset,
|
||||
split=args.split_name,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
manifest_item_list = []
|
||||
for i in range(len(dataset)):
|
||||
manifest_item_list.append(
|
||||
{
|
||||
"audio_filepath": dataset[i]["prompt_audio"],
|
||||
"reference_text": dataset[i]["prompt_text"],
|
||||
"target_audio_path": dataset[i]["id"],
|
||||
"target_text": dataset[i]["target_text"],
|
||||
}
|
||||
)
|
||||
else:
|
||||
manifest_item_list = load_manifests(args.manifest_path)
|
||||
|
||||
args.num_tasks = min(args.num_tasks, len(manifest_item_list))
|
||||
manifest_item_list = split_data(manifest_item_list, args.num_tasks)
|
||||
|
||||
os.makedirs(args.log_dir, exist_ok=True)
|
||||
tasks = []
|
||||
start_time = time.time()
|
||||
for i in range(args.num_tasks):
|
||||
task = asyncio.create_task(
|
||||
send(
|
||||
manifest_item_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=args.log_interval,
|
||||
model_name=args.model_name,
|
||||
audio_save_dir=args.log_dir,
|
||||
padding_duration=1,
|
||||
save_sample_rate=24000,
|
||||
)
|
||||
)
|
||||
tasks.append(task)
|
||||
|
||||
ans_list = await asyncio.gather(*tasks)
|
||||
|
||||
end_time = time.time()
|
||||
elapsed = end_time - start_time
|
||||
|
||||
total_duration = 0.0
|
||||
latency_data = []
|
||||
for ans in ans_list:
|
||||
total_duration += ans[0]
|
||||
latency_data += ans[1]
|
||||
|
||||
rtf = elapsed / total_duration
|
||||
|
||||
s = f"RTF: {rtf:.4f}\n"
|
||||
s += f"total_duration: {total_duration:.3f} seconds\n"
|
||||
s += f"({total_duration / 3600:.2f} hours)\n"
|
||||
s += f"processing time: {elapsed:.3f} seconds ({elapsed / 3600:.2f} hours)\n"
|
||||
|
||||
latency_list = [chunk_end for (chunk_end, chunk_duration) in latency_data]
|
||||
latency_ms = sum(latency_list) / float(len(latency_list)) * 1000.0
|
||||
latency_variance = np.var(latency_list, dtype=np.float64) * 1000.0
|
||||
s += f"latency_variance: {latency_variance:.2f}\n"
|
||||
s += f"latency_50_percentile_ms: {np.percentile(latency_list, 50) * 1000.0:.2f}\n"
|
||||
s += f"latency_90_percentile_ms: {np.percentile(latency_list, 90) * 1000.0:.2f}\n"
|
||||
s += f"latency_95_percentile_ms: {np.percentile(latency_list, 95) * 1000.0:.2f}\n"
|
||||
s += f"latency_99_percentile_ms: {np.percentile(latency_list, 99) * 1000.0:.2f}\n"
|
||||
s += f"average_latency_ms: {latency_ms:.2f}\n"
|
||||
|
||||
print(s)
|
||||
if args.manifest_path:
|
||||
name = Path(args.manifest_path).stem
|
||||
elif args.split_name:
|
||||
name = args.split_name
|
||||
with open(f"{args.log_dir}/rtf-{name}.txt", "w") as f:
|
||||
f.write(s)
|
||||
|
||||
stats = await triton_client.get_inference_statistics(model_name="", as_json=True)
|
||||
write_triton_stats(stats, f"{args.log_dir}/stats_summary-{name}.txt")
|
||||
|
||||
metadata = await triton_client.get_model_config(model_name=args.model_name, as_json=True)
|
||||
with open(f"{args.log_dir}/model_config-{name}.json", "w") as f:
|
||||
json.dump(metadata, f, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
143
src/f5_tts/runtime/triton_trtllm/client_http.py
Normal file
143
src/f5_tts/runtime/triton_trtllm/client_http.py
Normal file
@@ -0,0 +1,143 @@
|
||||
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
import soundfile as sf
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-url",
|
||||
type=str,
|
||||
default="localhost:8000",
|
||||
help="Address of the server",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--reference-audio",
|
||||
type=str,
|
||||
default="../../infer/examples/basic/basic_ref_en.wav",
|
||||
help="Path to a single audio file. It can't be specified at the same time with --manifest-dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--reference-text",
|
||||
type=str,
|
||||
default="Some call me nature, others call me mother nature.",
|
||||
help="",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--target-text",
|
||||
type=str,
|
||||
default="I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring.",
|
||||
help="",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="f5_tts",
|
||||
help="triton model_repo module name to request",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--output-audio",
|
||||
type=str,
|
||||
default="tests/client_http.wav",
|
||||
help="Path to save the output audio",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def prepare_request(
|
||||
waveform,
|
||||
reference_text,
|
||||
target_text,
|
||||
sample_rate=24000,
|
||||
audio_save_dir: str = "./",
|
||||
):
|
||||
assert len(waveform.shape) == 1, "waveform should be 1D"
|
||||
lengths = np.array([[len(waveform)]], dtype=np.int32)
|
||||
waveform = waveform.reshape(1, -1).astype(np.float32)
|
||||
|
||||
data = {
|
||||
"inputs": [
|
||||
{"name": "reference_wav", "shape": waveform.shape, "datatype": "FP32", "data": waveform.tolist()},
|
||||
{
|
||||
"name": "reference_wav_len",
|
||||
"shape": lengths.shape,
|
||||
"datatype": "INT32",
|
||||
"data": lengths.tolist(),
|
||||
},
|
||||
{"name": "reference_text", "shape": [1, 1], "datatype": "BYTES", "data": [reference_text]},
|
||||
{"name": "target_text", "shape": [1, 1], "datatype": "BYTES", "data": [target_text]},
|
||||
]
|
||||
}
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def load_audio(wav_path, target_sample_rate=24000):
|
||||
assert target_sample_rate == 24000, "hard coding in server"
|
||||
if isinstance(wav_path, dict):
|
||||
waveform = wav_path["array"]
|
||||
sample_rate = wav_path["sampling_rate"]
|
||||
else:
|
||||
waveform, sample_rate = sf.read(wav_path)
|
||||
if sample_rate != target_sample_rate:
|
||||
from scipy.signal import resample
|
||||
|
||||
waveform = resample(waveform, int(len(waveform) * (target_sample_rate / sample_rate)))
|
||||
return waveform, target_sample_rate
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
server_url = args.server_url
|
||||
if not server_url.startswith(("http://", "https://")):
|
||||
server_url = f"http://{server_url}"
|
||||
|
||||
url = f"{server_url}/v2/models/{args.model_name}/infer"
|
||||
waveform, sr = load_audio(args.reference_audio)
|
||||
assert sr == 24000, "sample rate hardcoded in server"
|
||||
|
||||
waveform = np.array(waveform, dtype=np.float32)
|
||||
data = prepare_request(waveform, args.reference_text, args.target_text)
|
||||
|
||||
rsp = requests.post(
|
||||
url, headers={"Content-Type": "application/json"}, json=data, verify=False, params={"request_id": "0"}
|
||||
)
|
||||
result = rsp.json()
|
||||
audio = result["outputs"][0]["data"]
|
||||
audio = np.array(audio, dtype=np.float32)
|
||||
os.makedirs(os.path.dirname(args.output_audio), exist_ok=True)
|
||||
sf.write(args.output_audio, audio, 24000, "PCM_16")
|
||||
20
src/f5_tts/runtime/triton_trtllm/docker-compose.yml
Normal file
20
src/f5_tts/runtime/triton_trtllm/docker-compose.yml
Normal file
@@ -0,0 +1,20 @@
|
||||
services:
|
||||
tts:
|
||||
image: soar97/triton-f5-tts:24.12
|
||||
shm_size: '1gb'
|
||||
ports:
|
||||
- "8000:8000"
|
||||
- "8001:8001"
|
||||
- "8002:8002"
|
||||
environment:
|
||||
- PYTHONIOENCODING=utf-8
|
||||
- MODEL_ID=${MODEL_ID}
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
device_ids: ['0']
|
||||
capabilities: [gpu]
|
||||
command: >
|
||||
/bin/bash -c "pip install vocos && rm -rf F5-TTS && git clone https://github.com/SWivid/F5-TTS.git && cd F5-TTS/src/f5_tts/runtime/triton_trtllm/ && bash run.sh 0 4 $MODEL"
|
||||
@@ -0,0 +1,477 @@
|
||||
import math
|
||||
import os
|
||||
import time
|
||||
from functools import wraps
|
||||
from typing import List, Optional
|
||||
|
||||
import tensorrt as trt
|
||||
import tensorrt_llm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from tensorrt_llm._utils import str_dtype_to_torch, trt_dtype_to_torch
|
||||
from tensorrt_llm.logger import logger
|
||||
from tensorrt_llm.runtime.session import Session
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def remove_tensor_padding(input_tensor, input_tensor_lengths=None):
|
||||
# Audio tensor case: batch, seq_len, feature_len
|
||||
# position_ids case: batch, seq_len
|
||||
assert input_tensor_lengths is not None, "input_tensor_lengths must be provided for 3D input_tensor"
|
||||
|
||||
# Initialize a list to collect valid sequences
|
||||
valid_sequences = []
|
||||
|
||||
for i in range(input_tensor.shape[0]):
|
||||
valid_length = input_tensor_lengths[i]
|
||||
valid_sequences.append(input_tensor[i, :valid_length])
|
||||
|
||||
# Concatenate all valid sequences along the batch dimension
|
||||
output_tensor = torch.cat(valid_sequences, dim=0).contiguous()
|
||||
return output_tensor
|
||||
|
||||
|
||||
class TextEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self, text_num_embeds, text_dim, mask_padding=True, conv_layers=0, conv_mult=2, precompute_max_pos=4096
|
||||
):
|
||||
super().__init__()
|
||||
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
||||
self.mask_padding = mask_padding
|
||||
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, precompute_max_pos), persistent=False)
|
||||
self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)])
|
||||
|
||||
def forward(self, text, seq_len, drop_text=False):
|
||||
text = text + 1
|
||||
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
||||
text = F.pad(text, (0, seq_len - text.shape[1]), value=0)
|
||||
if self.mask_padding:
|
||||
text_mask = text == 0
|
||||
|
||||
if drop_text: # cfg for text
|
||||
text = torch.zeros_like(text)
|
||||
|
||||
text = self.text_embed(text) # b n -> b n d
|
||||
text = text + self.freqs_cis[:seq_len, :]
|
||||
if self.mask_padding:
|
||||
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
||||
for block in self.text_blocks:
|
||||
text = block(text)
|
||||
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
||||
else:
|
||||
text = self.text_blocks(text)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
class GRN(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
||||
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
||||
|
||||
def forward(self, x):
|
||||
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
||||
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
||||
return self.gamma * (x * Nx) + self.beta + x
|
||||
|
||||
|
||||
class ConvNeXtV2Block(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
intermediate_dim: int,
|
||||
dilation: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
padding = (dilation * (7 - 1)) // 2
|
||||
self.dwconv = nn.Conv1d(
|
||||
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
|
||||
) # depthwise conv
|
||||
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
||||
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
||||
self.act = nn.GELU()
|
||||
self.grn = GRN(intermediate_dim)
|
||||
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
residual = x
|
||||
x = x.transpose(1, 2) # b n d -> b d n
|
||||
x = self.dwconv(x)
|
||||
x = x.transpose(1, 2) # b d n -> b n d
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
x = self.grn(x)
|
||||
x = self.pwconv2(x)
|
||||
return residual + x
|
||||
|
||||
|
||||
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
|
||||
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
||||
# has some connection to NTK literature
|
||||
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
||||
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||
freqs = torch.outer(t, freqs).float() # type: ignore
|
||||
freqs_cos = torch.cos(freqs) # real part
|
||||
freqs_sin = torch.sin(freqs) # imaginary part
|
||||
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
||||
|
||||
|
||||
def get_text_embed_dict(ckpt_path, use_ema=True):
|
||||
ckpt_type = ckpt_path.split(".")[-1]
|
||||
if ckpt_type == "safetensors":
|
||||
from safetensors.torch import load_file
|
||||
|
||||
checkpoint = load_file(ckpt_path)
|
||||
else:
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
||||
|
||||
if use_ema:
|
||||
if ckpt_type == "safetensors":
|
||||
checkpoint = {"ema_model_state_dict": checkpoint}
|
||||
checkpoint["model_state_dict"] = {
|
||||
k.replace("ema_model.", ""): v
|
||||
for k, v in checkpoint["ema_model_state_dict"].items()
|
||||
if k not in ["initted", "step"]
|
||||
}
|
||||
else:
|
||||
if ckpt_type == "safetensors":
|
||||
checkpoint = {"model_state_dict": checkpoint}
|
||||
model_params = checkpoint["model_state_dict"]
|
||||
|
||||
text_embed_dict = {}
|
||||
for key in model_params.keys():
|
||||
# transformer.text_embed.text_embed.weight -> text_embed.weight
|
||||
if "text_embed" in key:
|
||||
text_embed_dict[key.replace("transformer.text_embed.", "")] = model_params[key]
|
||||
return text_embed_dict
|
||||
|
||||
|
||||
class F5TTS(object):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
debug_mode=True,
|
||||
stream: Optional[torch.cuda.Stream] = None,
|
||||
tllm_model_dir: Optional[str] = None,
|
||||
model_path: Optional[str] = None,
|
||||
vocab_size: Optional[int] = None,
|
||||
):
|
||||
self.dtype = config["pretrained_config"]["dtype"]
|
||||
|
||||
rank = tensorrt_llm.mpi_rank()
|
||||
world_size = config["pretrained_config"]["mapping"]["world_size"]
|
||||
cp_size = config["pretrained_config"]["mapping"]["cp_size"]
|
||||
tp_size = config["pretrained_config"]["mapping"]["tp_size"]
|
||||
pp_size = config["pretrained_config"]["mapping"]["pp_size"]
|
||||
assert pp_size == 1
|
||||
self.mapping = tensorrt_llm.Mapping(
|
||||
world_size=world_size, rank=rank, cp_size=cp_size, tp_size=tp_size, pp_size=1, gpus_per_node=1
|
||||
)
|
||||
|
||||
local_rank = rank % self.mapping.gpus_per_node
|
||||
self.device = torch.device(f"cuda:{local_rank}")
|
||||
|
||||
torch.cuda.set_device(self.device)
|
||||
|
||||
self.stream = stream
|
||||
if self.stream is None:
|
||||
self.stream = torch.cuda.Stream(self.device)
|
||||
torch.cuda.set_stream(self.stream)
|
||||
|
||||
engine_file = os.path.join(tllm_model_dir, f"rank{rank}.engine")
|
||||
logger.info(f"Loading engine from {engine_file}")
|
||||
with open(engine_file, "rb") as f:
|
||||
engine_buffer = f.read()
|
||||
|
||||
assert engine_buffer is not None
|
||||
|
||||
self.session = Session.from_serialized_engine(engine_buffer)
|
||||
|
||||
self.debug_mode = debug_mode
|
||||
|
||||
self.inputs = {}
|
||||
self.outputs = {}
|
||||
self.buffer_allocated = False
|
||||
|
||||
expected_tensor_names = ["noise", "cond", "time", "rope_cos", "rope_sin", "input_lengths", "denoised"]
|
||||
|
||||
found_tensor_names = [self.session.engine.get_tensor_name(i) for i in range(self.session.engine.num_io_tensors)]
|
||||
if not self.debug_mode and set(expected_tensor_names) != set(found_tensor_names):
|
||||
logger.error(
|
||||
f"The following expected tensors are not found: {set(expected_tensor_names).difference(set(found_tensor_names))}"
|
||||
)
|
||||
logger.error(
|
||||
f"Those tensors in engine are not expected: {set(found_tensor_names).difference(set(expected_tensor_names))}"
|
||||
)
|
||||
logger.error(f"Expected tensor names: {expected_tensor_names}")
|
||||
logger.error(f"Found tensor names: {found_tensor_names}")
|
||||
raise RuntimeError("Tensor names in engine are not the same as expected.")
|
||||
if self.debug_mode:
|
||||
self.debug_tensors = list(set(found_tensor_names) - set(expected_tensor_names))
|
||||
|
||||
self.max_mel_len = 4096
|
||||
self.text_embedding = TextEmbedding(
|
||||
text_num_embeds=vocab_size,
|
||||
text_dim=config["pretrained_config"]["text_dim"],
|
||||
mask_padding=config["pretrained_config"]["text_mask_padding"],
|
||||
conv_layers=config["pretrained_config"]["conv_layers"],
|
||||
precompute_max_pos=self.max_mel_len,
|
||||
).to(self.device)
|
||||
self.text_embedding.load_state_dict(get_text_embed_dict(model_path), strict=True)
|
||||
|
||||
self.n_mel_channels = config["pretrained_config"]["mel_dim"]
|
||||
self.head_dim = config["pretrained_config"]["dim_head"]
|
||||
self.base_rescale_factor = 1.0
|
||||
self.interpolation_factor = 1.0
|
||||
base = 10000.0 * self.base_rescale_factor ** (self.head_dim / (self.head_dim - 2))
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim))
|
||||
freqs = torch.outer(torch.arange(self.max_mel_len, dtype=torch.float32), inv_freq) / self.interpolation_factor
|
||||
self.freqs = freqs.repeat_interleave(2, dim=-1).unsqueeze(0)
|
||||
self.rope_cos = self.freqs.cos().half()
|
||||
self.rope_sin = self.freqs.sin().half()
|
||||
|
||||
self.nfe_steps = 32
|
||||
epss = {
|
||||
5: [0, 2, 4, 8, 16, 32],
|
||||
6: [0, 2, 4, 6, 8, 16, 32],
|
||||
7: [0, 2, 4, 6, 8, 16, 24, 32],
|
||||
10: [0, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32],
|
||||
12: [0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32],
|
||||
16: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32],
|
||||
}
|
||||
t = 1 / 32 * torch.tensor(epss.get(self.nfe_steps, list(range(self.nfe_steps + 1))), dtype=torch.float32)
|
||||
time_step = 1 - torch.cos(torch.pi * t / 2)
|
||||
delta_t = torch.diff(time_step)
|
||||
|
||||
freq_embed_dim = 256 # Warning: hard coding 256 here
|
||||
time_expand = torch.zeros((1, self.nfe_steps, freq_embed_dim), dtype=torch.float32)
|
||||
half_dim = freq_embed_dim // 2
|
||||
emb_factor = math.log(10000) / (half_dim - 1)
|
||||
emb_factor = 1000.0 * torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb_factor)
|
||||
for i in range(self.nfe_steps):
|
||||
emb = time_step[i] * emb_factor
|
||||
time_expand[:, i, :] = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||||
self.time_expand = time_expand.to(self.device)
|
||||
self.delta_t = torch.cat((delta_t, delta_t), dim=0).contiguous().to(self.device)
|
||||
|
||||
def _tensor_dtype(self, name):
|
||||
# return torch dtype given tensor name for convenience
|
||||
dtype = trt_dtype_to_torch(self.session.engine.get_tensor_dtype(name))
|
||||
return dtype
|
||||
|
||||
def _setup(self, batch_size, seq_len):
|
||||
for i in range(self.session.engine.num_io_tensors):
|
||||
name = self.session.engine.get_tensor_name(i)
|
||||
if self.session.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT:
|
||||
shape = list(self.session.engine.get_tensor_shape(name))
|
||||
shape[0] = batch_size
|
||||
shape[1] = seq_len
|
||||
self.outputs[name] = torch.empty(shape, dtype=self._tensor_dtype(name), device=self.device)
|
||||
|
||||
self.buffer_allocated = True
|
||||
|
||||
def cuda_stream_guard(func):
|
||||
"""Sync external stream and set current stream to the one bound to the session. Reset on exit."""
|
||||
|
||||
@wraps(func)
|
||||
def wrapper(self, *args, **kwargs):
|
||||
external_stream = torch.cuda.current_stream()
|
||||
if external_stream != self.stream:
|
||||
external_stream.synchronize()
|
||||
torch.cuda.set_stream(self.stream)
|
||||
ret = func(self, *args, **kwargs)
|
||||
if external_stream != self.stream:
|
||||
self.stream.synchronize()
|
||||
torch.cuda.set_stream(external_stream)
|
||||
return ret
|
||||
|
||||
return wrapper
|
||||
|
||||
@cuda_stream_guard
|
||||
def forward(
|
||||
self,
|
||||
noise: torch.Tensor,
|
||||
cond: torch.Tensor,
|
||||
time_expand: torch.Tensor,
|
||||
rope_cos: torch.Tensor,
|
||||
rope_sin: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
delta_t: torch.Tensor,
|
||||
use_perf: bool = False,
|
||||
):
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_push("flow matching")
|
||||
cfg_strength = 2.0
|
||||
batch_size = noise.shape[0]
|
||||
half_batch = batch_size // 2
|
||||
noise_half = noise[:half_batch] # Store the initial half of noise
|
||||
|
||||
input_type = str_dtype_to_torch(self.dtype)
|
||||
|
||||
# Keep a copy of the initial tensors
|
||||
cond = cond.to(input_type)
|
||||
rope_cos = rope_cos.to(input_type)
|
||||
rope_sin = rope_sin.to(input_type)
|
||||
input_lengths = input_lengths.to(str_dtype_to_torch("int32"))
|
||||
|
||||
# Instead of iteratively updating noise within a single model context,
|
||||
# we'll do a single forward pass for each iteration with fresh context setup
|
||||
for i in range(self.nfe_steps):
|
||||
# Re-setup the buffers for clean execution
|
||||
self._setup(batch_size, noise.shape[1])
|
||||
if not self.buffer_allocated:
|
||||
raise RuntimeError("Buffer not allocated, please call setup first!")
|
||||
|
||||
# Re-create combined noises for this iteration
|
||||
current_noise = torch.cat([noise_half, noise_half], dim=0).to(input_type)
|
||||
|
||||
# Get time step for this iteration
|
||||
current_time = time_expand[:, i].to(input_type)
|
||||
|
||||
# Create fresh input dictionary for this iteration
|
||||
current_inputs = {
|
||||
"noise": current_noise,
|
||||
"cond": cond,
|
||||
"time": current_time,
|
||||
"rope_cos": rope_cos,
|
||||
"rope_sin": rope_sin,
|
||||
"input_lengths": input_lengths,
|
||||
}
|
||||
|
||||
# Update inputs and set shapes
|
||||
self.inputs.clear() # Clear previous inputs
|
||||
self.inputs.update(**current_inputs)
|
||||
self.session.set_shapes(self.inputs)
|
||||
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_push(f"execute {i}")
|
||||
ok = self.session.run(self.inputs, self.outputs, self.stream.cuda_stream)
|
||||
assert ok, "Failed to execute model"
|
||||
# self.session.context.execute_async_v3(self.stream.cuda_stream)
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
# Process results
|
||||
t_scale = delta_t[i].unsqueeze(0).to(input_type)
|
||||
|
||||
# Extract predictions
|
||||
pred_cond = self.outputs["denoised"][:half_batch]
|
||||
pred_uncond = self.outputs["denoised"][half_batch:]
|
||||
|
||||
# Apply classifier-free guidance with safeguards
|
||||
guidance = pred_cond + (pred_cond - pred_uncond) * cfg_strength
|
||||
# Calculate update for noise
|
||||
noise_half = noise_half + guidance * t_scale
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
return noise_half
|
||||
|
||||
def sample(
|
||||
self,
|
||||
text_pad_sequence: torch.Tensor,
|
||||
cond_pad_sequence: torch.Tensor,
|
||||
ref_mel_len_batch: torch.Tensor,
|
||||
estimated_reference_target_mel_len: List[int],
|
||||
remove_input_padding: bool = False,
|
||||
use_perf: bool = False,
|
||||
):
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_push("text embedding")
|
||||
batch = text_pad_sequence.shape[0]
|
||||
max_seq_len = cond_pad_sequence.shape[1]
|
||||
|
||||
# get text_embed one by one to avoid misalignment
|
||||
text_and_drop_embedding_list = []
|
||||
for i in range(batch):
|
||||
text_embedding_i = self.text_embedding(
|
||||
text_pad_sequence[i].unsqueeze(0).to(self.device),
|
||||
estimated_reference_target_mel_len[i],
|
||||
drop_text=False,
|
||||
)
|
||||
text_embedding_drop_i = self.text_embedding(
|
||||
text_pad_sequence[i].unsqueeze(0).to(self.device),
|
||||
estimated_reference_target_mel_len[i],
|
||||
drop_text=True,
|
||||
)
|
||||
text_and_drop_embedding_list.extend([text_embedding_i[0], text_embedding_drop_i[0]])
|
||||
|
||||
# pad separately computed text_embed to form batch with max_seq_len
|
||||
text_and_drop_embedding = pad_sequence(
|
||||
text_and_drop_embedding_list,
|
||||
batch_first=True,
|
||||
padding_value=0,
|
||||
)
|
||||
text_embedding = text_and_drop_embedding[0::2]
|
||||
text_embedding_drop = text_and_drop_embedding[1::2]
|
||||
|
||||
noise = torch.randn_like(cond_pad_sequence).to(self.device)
|
||||
rope_cos = self.rope_cos[:, :max_seq_len, :].float().repeat(batch, 1, 1)
|
||||
rope_sin = self.rope_sin[:, :max_seq_len, :].float().repeat(batch, 1, 1)
|
||||
|
||||
cat_mel_text = torch.cat(
|
||||
(
|
||||
cond_pad_sequence,
|
||||
text_embedding,
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
cat_mel_text_drop = torch.cat(
|
||||
(
|
||||
torch.zeros((batch, max_seq_len, self.n_mel_channels), dtype=torch.float32).to(self.device),
|
||||
text_embedding_drop,
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
time_expand = self.time_expand.repeat(2 * batch, 1, 1).contiguous()
|
||||
|
||||
# Convert estimated_reference_target_mel_len to tensor
|
||||
input_lengths = torch.tensor(estimated_reference_target_mel_len, dtype=torch.int32)
|
||||
|
||||
# combine above along the batch dimension
|
||||
inputs = {
|
||||
"noise": torch.cat((noise, noise), dim=0).contiguous(),
|
||||
"cond": torch.cat((cat_mel_text, cat_mel_text_drop), dim=0).contiguous(),
|
||||
"time_expand": time_expand,
|
||||
"rope_cos": torch.cat((rope_cos, rope_cos), dim=0).contiguous(),
|
||||
"rope_sin": torch.cat((rope_sin, rope_sin), dim=0).contiguous(),
|
||||
"input_lengths": torch.cat((input_lengths, input_lengths), dim=0).contiguous(),
|
||||
"delta_t": self.delta_t,
|
||||
}
|
||||
if use_perf and remove_input_padding:
|
||||
torch.cuda.nvtx.range_push("remove input padding")
|
||||
if remove_input_padding:
|
||||
max_seq_len = inputs["cond"].shape[1]
|
||||
inputs["noise"] = remove_tensor_padding(inputs["noise"], inputs["input_lengths"])
|
||||
inputs["cond"] = remove_tensor_padding(inputs["cond"], inputs["input_lengths"])
|
||||
# for time_expand, convert from B,D to B,T,D by repeat
|
||||
inputs["time_expand"] = inputs["time_expand"].unsqueeze(1).repeat(1, max_seq_len, 1, 1)
|
||||
inputs["time_expand"] = remove_tensor_padding(inputs["time_expand"], inputs["input_lengths"])
|
||||
inputs["rope_cos"] = remove_tensor_padding(inputs["rope_cos"], inputs["input_lengths"])
|
||||
inputs["rope_sin"] = remove_tensor_padding(inputs["rope_sin"], inputs["input_lengths"])
|
||||
if use_perf and remove_input_padding:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
for key in inputs:
|
||||
inputs[key] = inputs[key].to(self.device)
|
||||
if use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
start_time = time.time()
|
||||
denoised = self.forward(**inputs, use_perf=use_perf)
|
||||
cost_time = time.time() - start_time
|
||||
if use_perf and remove_input_padding:
|
||||
torch.cuda.nvtx.range_push("remove input padding output")
|
||||
if remove_input_padding:
|
||||
denoised_list = []
|
||||
start_idx = 0
|
||||
for i in range(batch):
|
||||
denoised_list.append(denoised[start_idx : start_idx + inputs["input_lengths"][i]])
|
||||
start_idx += inputs["input_lengths"][i]
|
||||
if use_perf and remove_input_padding:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
return denoised_list, cost_time
|
||||
return denoised, cost_time
|
||||
@@ -0,0 +1,269 @@
|
||||
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
import json
|
||||
import os
|
||||
|
||||
import jieba
|
||||
import torch
|
||||
import torchaudio
|
||||
import triton_python_backend_utils as pb_utils
|
||||
from f5_tts_trtllm import F5TTS
|
||||
from pypinyin import Style, lazy_pinyin
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from torch.utils.dlpack import from_dlpack, to_dlpack
|
||||
|
||||
|
||||
def get_tokenizer(vocab_file_path: str):
|
||||
"""
|
||||
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
||||
- "char" for char-wise tokenizer, need .txt vocab_file
|
||||
- "byte" for utf-8 tokenizer
|
||||
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
||||
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
||||
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
||||
- if use "byte", set to 256 (unicode byte range)
|
||||
"""
|
||||
with open(vocab_file_path, "r", encoding="utf-8") as f:
|
||||
vocab_char_map = {}
|
||||
for i, char in enumerate(f):
|
||||
vocab_char_map[char[:-1]] = i
|
||||
vocab_size = len(vocab_char_map)
|
||||
return vocab_char_map, vocab_size
|
||||
|
||||
|
||||
def convert_char_to_pinyin(reference_target_texts_list, polyphone=True):
|
||||
final_reference_target_texts_list = []
|
||||
custom_trans = str.maketrans(
|
||||
{";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"}
|
||||
) # add custom trans here, to address oov
|
||||
|
||||
def is_chinese(c):
|
||||
return "\u3100" <= c <= "\u9fff" # common chinese characters
|
||||
|
||||
for text in reference_target_texts_list:
|
||||
char_list = []
|
||||
text = text.translate(custom_trans)
|
||||
for seg in jieba.cut(text):
|
||||
seg_byte_len = len(bytes(seg, "UTF-8"))
|
||||
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
||||
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
||||
char_list.append(" ")
|
||||
char_list.extend(seg)
|
||||
elif polyphone and seg_byte_len == 3 * len(seg): # if pure east asian characters
|
||||
seg_ = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
|
||||
for i, c in enumerate(seg):
|
||||
if is_chinese(c):
|
||||
char_list.append(" ")
|
||||
char_list.append(seg_[i])
|
||||
else: # if mixed characters, alphabets and symbols
|
||||
for c in seg:
|
||||
if ord(c) < 256:
|
||||
char_list.extend(c)
|
||||
elif is_chinese(c):
|
||||
char_list.append(" ")
|
||||
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
|
||||
else:
|
||||
char_list.append(c)
|
||||
final_reference_target_texts_list.append(char_list)
|
||||
|
||||
return final_reference_target_texts_list
|
||||
|
||||
|
||||
def list_str_to_idx(
|
||||
text: list[str] | list[list[str]],
|
||||
vocab_char_map: dict[str, int], # {char: idx}
|
||||
padding_value=-1,
|
||||
): # noqa: F722
|
||||
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
||||
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
||||
return text
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
def initialize(self, args):
|
||||
self.use_perf = True
|
||||
self.device = torch.device("cuda")
|
||||
self.target_audio_sample_rate = 24000
|
||||
self.target_rms = 0.1 # least rms when inference, normalize to if lower
|
||||
self.n_fft = 1024
|
||||
self.win_length = 1024
|
||||
self.hop_length = 256
|
||||
self.n_mel_channels = 100
|
||||
self.max_mel_len = 4096
|
||||
|
||||
parameters = json.loads(args["model_config"])["parameters"]
|
||||
for key, value in parameters.items():
|
||||
parameters[key] = value["string_value"]
|
||||
|
||||
self.vocab_char_map, self.vocab_size = get_tokenizer(parameters["vocab_file"])
|
||||
self.reference_sample_rate = int(parameters["reference_audio_sample_rate"])
|
||||
self.resampler = torchaudio.transforms.Resample(self.reference_sample_rate, self.target_audio_sample_rate)
|
||||
|
||||
self.tllm_model_dir = parameters["tllm_model_dir"]
|
||||
config_file = os.path.join(self.tllm_model_dir, "config.json")
|
||||
with open(config_file) as f:
|
||||
config = json.load(f)
|
||||
self.model = F5TTS(
|
||||
config,
|
||||
debug_mode=False,
|
||||
tllm_model_dir=self.tllm_model_dir,
|
||||
model_path=parameters["model_path"],
|
||||
vocab_size=self.vocab_size,
|
||||
)
|
||||
|
||||
self.vocoder = parameters["vocoder"]
|
||||
assert self.vocoder in ["vocos", "bigvgan"]
|
||||
if self.vocoder == "vocos":
|
||||
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
||||
sample_rate=self.target_audio_sample_rate,
|
||||
n_fft=self.n_fft,
|
||||
win_length=self.win_length,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mel_channels,
|
||||
power=1,
|
||||
center=True,
|
||||
normalized=False,
|
||||
norm=None,
|
||||
).to(self.device)
|
||||
self.compute_mel_fn = self.get_vocos_mel_spectrogram
|
||||
elif self.vocoder == "bigvgan":
|
||||
self.compute_mel_fn = self.get_bigvgan_mel_spectrogram
|
||||
|
||||
def get_vocos_mel_spectrogram(self, waveform):
|
||||
mel = self.mel_stft(waveform)
|
||||
mel = mel.clamp(min=1e-5).log()
|
||||
return mel.transpose(1, 2)
|
||||
|
||||
def forward_vocoder(self, mel):
|
||||
mel = mel.to(torch.float32).contiguous().cpu()
|
||||
input_tensor_0 = pb_utils.Tensor.from_dlpack("mel", to_dlpack(mel))
|
||||
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name="vocoder", requested_output_names=["waveform"], inputs=[input_tensor_0]
|
||||
)
|
||||
inference_response = inference_request.exec()
|
||||
if inference_response.has_error():
|
||||
raise pb_utils.TritonModelException(inference_response.error().message())
|
||||
else:
|
||||
waveform = pb_utils.get_output_tensor_by_name(inference_response, "waveform")
|
||||
waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
|
||||
|
||||
return waveform
|
||||
|
||||
def execute(self, requests):
|
||||
(
|
||||
reference_text_list,
|
||||
target_text_list,
|
||||
reference_target_texts_list,
|
||||
estimated_reference_target_mel_len,
|
||||
reference_mel_len,
|
||||
reference_rms_list,
|
||||
) = [], [], [], [], [], []
|
||||
mel_features_list = []
|
||||
if self.use_perf:
|
||||
torch.cuda.nvtx.range_push("preprocess")
|
||||
for request in requests:
|
||||
wav_tensor = pb_utils.get_input_tensor_by_name(request, "reference_wav")
|
||||
wav_lens = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
|
||||
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode("utf-8")
|
||||
reference_text_list.append(reference_text)
|
||||
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
|
||||
target_text = target_text[0][0].decode("utf-8")
|
||||
target_text_list.append(target_text)
|
||||
|
||||
text = reference_text + target_text
|
||||
reference_target_texts_list.append(text)
|
||||
|
||||
wav = from_dlpack(wav_tensor.to_dlpack())
|
||||
wav_len = from_dlpack(wav_lens.to_dlpack())
|
||||
wav_len = wav_len.squeeze()
|
||||
assert wav.shape[0] == 1, "Only support batch size 1 for now."
|
||||
wav = wav[:, :wav_len]
|
||||
|
||||
ref_rms = torch.sqrt(torch.mean(torch.square(wav)))
|
||||
if ref_rms < self.target_rms:
|
||||
wav = wav * self.target_rms / ref_rms
|
||||
reference_rms_list.append(ref_rms)
|
||||
if self.reference_sample_rate != self.target_audio_sample_rate:
|
||||
wav = self.resampler(wav)
|
||||
wav = wav.to(self.device)
|
||||
if self.use_perf:
|
||||
torch.cuda.nvtx.range_push("compute_mel")
|
||||
mel_features = self.compute_mel_fn(wav)
|
||||
if self.use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
mel_features_list.append(mel_features)
|
||||
|
||||
reference_mel_len.append(mel_features.shape[1])
|
||||
estimated_reference_target_mel_len.append(
|
||||
int(
|
||||
mel_features.shape[1] * (1 + len(target_text.encode("utf-8")) / len(reference_text.encode("utf-8")))
|
||||
)
|
||||
)
|
||||
|
||||
max_seq_len = min(max(estimated_reference_target_mel_len), self.max_mel_len)
|
||||
|
||||
batch = len(requests)
|
||||
mel_features = torch.zeros((batch, max_seq_len, self.n_mel_channels), dtype=torch.float32).to(self.device)
|
||||
for i, mel in enumerate(mel_features_list):
|
||||
mel_features[i, : mel.shape[1], :] = mel
|
||||
|
||||
reference_mel_len_tensor = torch.LongTensor(reference_mel_len).to(self.device)
|
||||
|
||||
pinyin_list = convert_char_to_pinyin(reference_target_texts_list, polyphone=True)
|
||||
text_pad_sequence = list_str_to_idx(pinyin_list, self.vocab_char_map)
|
||||
|
||||
if self.use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
|
||||
denoised, cost_time = self.model.sample(
|
||||
text_pad_sequence,
|
||||
mel_features,
|
||||
reference_mel_len_tensor,
|
||||
estimated_reference_target_mel_len,
|
||||
remove_input_padding=False,
|
||||
use_perf=self.use_perf,
|
||||
)
|
||||
if self.use_perf:
|
||||
torch.cuda.nvtx.range_push("vocoder")
|
||||
|
||||
responses = []
|
||||
for i in range(batch):
|
||||
ref_mel_len = reference_mel_len[i]
|
||||
estimated_mel_len = estimated_reference_target_mel_len[i]
|
||||
denoised_one_item = denoised[i, ref_mel_len:estimated_mel_len, :].unsqueeze(0).transpose(1, 2)
|
||||
audio = self.forward_vocoder(denoised_one_item)
|
||||
if reference_rms_list[i] < self.target_rms:
|
||||
audio = audio * reference_rms_list[i] / self.target_rms
|
||||
|
||||
audio = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio])
|
||||
responses.append(inference_response)
|
||||
if self.use_perf:
|
||||
torch.cuda.nvtx.range_pop()
|
||||
return responses
|
||||
@@ -0,0 +1,81 @@
|
||||
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "f5_tts"
|
||||
backend: "python"
|
||||
max_batch_size: 4
|
||||
dynamic_batching {
|
||||
max_queue_delay_microseconds: 1000
|
||||
}
|
||||
parameters [
|
||||
{
|
||||
key: "vocab_file"
|
||||
value: { string_value: "${vocab}"}
|
||||
},
|
||||
{
|
||||
key: "model_path",
|
||||
value: {string_value:"${model}"}
|
||||
},
|
||||
{
|
||||
key: "tllm_model_dir",
|
||||
value: {string_value:"${trtllm}"}
|
||||
},
|
||||
{
|
||||
key: "reference_audio_sample_rate",
|
||||
value: {string_value:"24000"}
|
||||
},
|
||||
{
|
||||
key: "vocoder",
|
||||
value: {string_value:"${vocoder}"}
|
||||
}
|
||||
]
|
||||
|
||||
input [
|
||||
{
|
||||
name: "reference_wav"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1]
|
||||
optional: True
|
||||
},
|
||||
{
|
||||
name: "reference_wav_len"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
optional: True
|
||||
},
|
||||
{
|
||||
name: "reference_text"
|
||||
data_type: TYPE_STRING
|
||||
dims: [1]
|
||||
},
|
||||
{
|
||||
name: "target_text"
|
||||
data_type: TYPE_STRING
|
||||
dims: [1]
|
||||
}
|
||||
]
|
||||
output [
|
||||
{
|
||||
name: "waveform"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_GPU
|
||||
}
|
||||
]
|
||||
@@ -0,0 +1,32 @@
|
||||
name: "vocoder"
|
||||
backend: "tensorrt"
|
||||
default_model_filename: "vocoder.plan"
|
||||
max_batch_size: 4
|
||||
|
||||
input [
|
||||
{
|
||||
name: "mel"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ 100, -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "waveform"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
dynamic_batching {
|
||||
preferred_batch_size: [1, 2, 4]
|
||||
max_queue_delay_microseconds: 1
|
||||
}
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_GPU
|
||||
}
|
||||
]
|
||||
199
src/f5_tts/runtime/triton_trtllm/patch/__init__.py
Normal file
199
src/f5_tts/runtime/triton_trtllm/patch/__init__.py
Normal file
@@ -0,0 +1,199 @@
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .baichuan.model import BaichuanForCausalLM
|
||||
from .bert.model import (
|
||||
BertForQuestionAnswering,
|
||||
BertForSequenceClassification,
|
||||
BertModel,
|
||||
RobertaForQuestionAnswering,
|
||||
RobertaForSequenceClassification,
|
||||
RobertaModel,
|
||||
)
|
||||
from .bloom.model import BloomForCausalLM, BloomModel
|
||||
from .chatglm.config import ChatGLMConfig
|
||||
from .chatglm.model import ChatGLMForCausalLM, ChatGLMModel
|
||||
from .cogvlm.config import CogVLMConfig
|
||||
from .cogvlm.model import CogVLMForCausalLM
|
||||
from .commandr.model import CohereForCausalLM
|
||||
from .dbrx.config import DbrxConfig
|
||||
from .dbrx.model import DbrxForCausalLM
|
||||
from .deepseek_v1.model import DeepseekForCausalLM
|
||||
from .deepseek_v2.model import DeepseekV2ForCausalLM
|
||||
from .dit.model import DiT
|
||||
from .eagle.model import EagleForCausalLM
|
||||
from .enc_dec.model import DecoderModel, EncoderModel, WhisperEncoder
|
||||
from .f5tts.model import F5TTS
|
||||
from .falcon.config import FalconConfig
|
||||
from .falcon.model import FalconForCausalLM, FalconModel
|
||||
from .gemma.config import GEMMA2_ARCHITECTURE, GEMMA_ARCHITECTURE, GemmaConfig
|
||||
from .gemma.model import GemmaForCausalLM
|
||||
from .gpt.config import GPTConfig
|
||||
from .gpt.model import GPTForCausalLM, GPTModel
|
||||
from .gptj.config import GPTJConfig
|
||||
from .gptj.model import GPTJForCausalLM, GPTJModel
|
||||
from .gptneox.model import GPTNeoXForCausalLM, GPTNeoXModel
|
||||
from .grok.model import GrokForCausalLM
|
||||
from .llama.config import LLaMAConfig
|
||||
from .llama.model import LLaMAForCausalLM, LLaMAModel
|
||||
from .mamba.model import MambaForCausalLM
|
||||
from .medusa.config import MedusaConfig
|
||||
from .medusa.model import MedusaForCausalLm
|
||||
from .mllama.model import MLLaMAModel
|
||||
from .modeling_utils import PretrainedConfig, PretrainedModel, SpeculativeDecodingMode
|
||||
from .mpt.model import MPTForCausalLM, MPTModel
|
||||
from .nemotron_nas.model import DeciLMForCausalLM
|
||||
from .opt.model import OPTForCausalLM, OPTModel
|
||||
from .phi.model import PhiForCausalLM, PhiModel
|
||||
from .phi3.model import Phi3ForCausalLM, Phi3Model
|
||||
from .qwen.model import QWenForCausalLM
|
||||
from .recurrentgemma.model import RecurrentGemmaForCausalLM
|
||||
from .redrafter.model import ReDrafterForCausalLM
|
||||
|
||||
|
||||
__all__ = [
|
||||
"BertModel",
|
||||
"BertForQuestionAnswering",
|
||||
"BertForSequenceClassification",
|
||||
"RobertaModel",
|
||||
"RobertaForQuestionAnswering",
|
||||
"RobertaForSequenceClassification",
|
||||
"BloomModel",
|
||||
"BloomForCausalLM",
|
||||
"DiT",
|
||||
"DeepseekForCausalLM",
|
||||
"FalconConfig",
|
||||
"DeepseekV2ForCausalLM",
|
||||
"FalconForCausalLM",
|
||||
"FalconModel",
|
||||
"GPTConfig",
|
||||
"GPTModel",
|
||||
"GPTForCausalLM",
|
||||
"OPTForCausalLM",
|
||||
"OPTModel",
|
||||
"LLaMAConfig",
|
||||
"LLaMAForCausalLM",
|
||||
"LLaMAModel",
|
||||
"MedusaConfig",
|
||||
"MedusaForCausalLm",
|
||||
"ReDrafterForCausalLM",
|
||||
"GPTJConfig",
|
||||
"GPTJModel",
|
||||
"GPTJForCausalLM",
|
||||
"GPTNeoXModel",
|
||||
"GPTNeoXForCausalLM",
|
||||
"PhiModel",
|
||||
"PhiConfig",
|
||||
"Phi3Model",
|
||||
"Phi3Config",
|
||||
"PhiForCausalLM",
|
||||
"Phi3ForCausalLM",
|
||||
"ChatGLMConfig",
|
||||
"ChatGLMForCausalLM",
|
||||
"ChatGLMModel",
|
||||
"BaichuanForCausalLM",
|
||||
"QWenConfigQWenForCausalLM",
|
||||
"QWenModel",
|
||||
"EncoderModel",
|
||||
"DecoderModel",
|
||||
"PretrainedConfig",
|
||||
"PretrainedModel",
|
||||
"WhisperEncoder",
|
||||
"MambaForCausalLM",
|
||||
"MambaConfig",
|
||||
"MPTForCausalLM",
|
||||
"MPTModel",
|
||||
"SkyworkForCausalLM",
|
||||
"GemmaConfig",
|
||||
"GemmaForCausalLM",
|
||||
"DbrxConfig",
|
||||
"DbrxForCausalLM",
|
||||
"RecurrentGemmaForCausalLM",
|
||||
"CogVLMConfig",
|
||||
"CogVLMForCausalLM",
|
||||
"EagleForCausalLM",
|
||||
"SpeculativeDecodingMode",
|
||||
"CohereForCausalLM",
|
||||
"MLLaMAModel",
|
||||
"F5TTS",
|
||||
]
|
||||
|
||||
MODEL_MAP = {
|
||||
"GPT2LMHeadModel": GPTForCausalLM,
|
||||
"GPT2LMHeadCustomModel": GPTForCausalLM,
|
||||
"GPTBigCodeForCausalLM": GPTForCausalLM,
|
||||
"Starcoder2ForCausalLM": GPTForCausalLM,
|
||||
"FuyuForCausalLM": GPTForCausalLM,
|
||||
"Kosmos2ForConditionalGeneration": GPTForCausalLM,
|
||||
"JAISLMHeadModel": GPTForCausalLM,
|
||||
"GPTForCausalLM": GPTForCausalLM,
|
||||
"NemotronForCausalLM": GPTForCausalLM,
|
||||
"OPTForCausalLM": OPTForCausalLM,
|
||||
"BloomForCausalLM": BloomForCausalLM,
|
||||
"RWForCausalLM": FalconForCausalLM,
|
||||
"FalconForCausalLM": FalconForCausalLM,
|
||||
"PhiForCausalLM": PhiForCausalLM,
|
||||
"Phi3ForCausalLM": Phi3ForCausalLM,
|
||||
"Phi3VForCausalLM": Phi3ForCausalLM,
|
||||
"Phi3SmallForCausalLM": Phi3ForCausalLM,
|
||||
"PhiMoEForCausalLM": Phi3ForCausalLM,
|
||||
"MambaForCausalLM": MambaForCausalLM,
|
||||
"GPTNeoXForCausalLM": GPTNeoXForCausalLM,
|
||||
"GPTJForCausalLM": GPTJForCausalLM,
|
||||
"MPTForCausalLM": MPTForCausalLM,
|
||||
"GLMModel": ChatGLMForCausalLM,
|
||||
"ChatGLMModel": ChatGLMForCausalLM,
|
||||
"ChatGLMForCausalLM": ChatGLMForCausalLM,
|
||||
"LlamaForCausalLM": LLaMAForCausalLM,
|
||||
"ExaoneForCausalLM": LLaMAForCausalLM,
|
||||
"MistralForCausalLM": LLaMAForCausalLM,
|
||||
"MixtralForCausalLM": LLaMAForCausalLM,
|
||||
"ArcticForCausalLM": LLaMAForCausalLM,
|
||||
"Grok1ModelForCausalLM": GrokForCausalLM,
|
||||
"InternLMForCausalLM": LLaMAForCausalLM,
|
||||
"InternLM2ForCausalLM": LLaMAForCausalLM,
|
||||
"MedusaForCausalLM": MedusaForCausalLm,
|
||||
"ReDrafterForCausalLM": ReDrafterForCausalLM,
|
||||
"BaichuanForCausalLM": BaichuanForCausalLM,
|
||||
"BaiChuanForCausalLM": BaichuanForCausalLM,
|
||||
"SkyworkForCausalLM": LLaMAForCausalLM,
|
||||
GEMMA_ARCHITECTURE: GemmaForCausalLM,
|
||||
GEMMA2_ARCHITECTURE: GemmaForCausalLM,
|
||||
"QWenLMHeadModel": QWenForCausalLM,
|
||||
"QWenForCausalLM": QWenForCausalLM,
|
||||
"Qwen2ForCausalLM": QWenForCausalLM,
|
||||
"Qwen2MoeForCausalLM": QWenForCausalLM,
|
||||
"Qwen2ForSequenceClassification": QWenForCausalLM,
|
||||
"Qwen2VLForConditionalGeneration": QWenForCausalLM,
|
||||
"WhisperEncoder": WhisperEncoder,
|
||||
"EncoderModel": EncoderModel,
|
||||
"DecoderModel": DecoderModel,
|
||||
"DbrxForCausalLM": DbrxForCausalLM,
|
||||
"RecurrentGemmaForCausalLM": RecurrentGemmaForCausalLM,
|
||||
"CogVLMForCausalLM": CogVLMForCausalLM,
|
||||
"DiT": DiT,
|
||||
"DeepseekForCausalLM": DeepseekForCausalLM,
|
||||
"DeciLMForCausalLM": DeciLMForCausalLM,
|
||||
"DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
|
||||
"EagleForCausalLM": EagleForCausalLM,
|
||||
"CohereForCausalLM": CohereForCausalLM,
|
||||
"MllamaForConditionalGeneration": MLLaMAModel,
|
||||
"BertForQuestionAnswering": BertForQuestionAnswering,
|
||||
"BertForSequenceClassification": BertForSequenceClassification,
|
||||
"BertModel": BertModel,
|
||||
"RobertaModel": RobertaModel,
|
||||
"RobertaForQuestionAnswering": RobertaForQuestionAnswering,
|
||||
"RobertaForSequenceClassification": RobertaForSequenceClassification,
|
||||
"F5TTS": F5TTS,
|
||||
}
|
||||
247
src/f5_tts/runtime/triton_trtllm/patch/f5tts/model.py
Normal file
247
src/f5_tts/runtime/triton_trtllm/patch/f5tts/model.py
Normal file
@@ -0,0 +1,247 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import sys
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
import tensorrt as trt
|
||||
from tensorrt_llm._common import default_net
|
||||
|
||||
from ..._utils import str_dtype_to_trt
|
||||
from ...functional import (
|
||||
Tensor,
|
||||
concat,
|
||||
constant,
|
||||
expand,
|
||||
shape,
|
||||
slice,
|
||||
unsqueeze,
|
||||
)
|
||||
from ...layers import Linear
|
||||
from ...module import Module, ModuleList
|
||||
from ...plugin import current_all_reduce_helper
|
||||
from ..modeling_utils import PretrainedConfig, PretrainedModel
|
||||
from .modules import AdaLayerNormZero_Final, ConvPositionEmbedding, DiTBlock, TimestepEmbedding
|
||||
|
||||
|
||||
current_file_path = os.path.abspath(__file__)
|
||||
parent_dir = os.path.dirname(current_file_path)
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
|
||||
class InputEmbedding(Module):
|
||||
def __init__(self, mel_dim, text_dim, out_dim):
|
||||
super().__init__()
|
||||
self.proj = Linear(mel_dim * 2 + text_dim, out_dim)
|
||||
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
||||
|
||||
def forward(self, x, cond, mask=None):
|
||||
x = self.proj(concat([x, cond], dim=-1))
|
||||
return self.conv_pos_embed(x, mask=mask) + x
|
||||
|
||||
|
||||
class F5TTS(PretrainedModel):
|
||||
def __init__(self, config: PretrainedConfig):
|
||||
super().__init__(config)
|
||||
self.dtype = str_dtype_to_trt(config.dtype)
|
||||
|
||||
self.time_embed = TimestepEmbedding(config.hidden_size)
|
||||
self.input_embed = InputEmbedding(config.mel_dim, config.text_dim, config.hidden_size)
|
||||
|
||||
self.dim = config.hidden_size
|
||||
self.depth = config.num_hidden_layers
|
||||
self.transformer_blocks = ModuleList(
|
||||
[
|
||||
DiTBlock(
|
||||
dim=self.dim,
|
||||
heads=config.num_attention_heads,
|
||||
dim_head=config.dim_head,
|
||||
ff_mult=config.ff_mult,
|
||||
dropout=config.dropout,
|
||||
pe_attn_head=config.pe_attn_head,
|
||||
)
|
||||
for _ in range(self.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_out = AdaLayerNormZero_Final(config.hidden_size) # final modulation
|
||||
self.proj_out = Linear(config.hidden_size, config.mel_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
noise, # nosied input audio
|
||||
cond, # masked cond audio
|
||||
time, # time step
|
||||
rope_cos,
|
||||
rope_sin,
|
||||
input_lengths,
|
||||
scale=1.0,
|
||||
):
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
mask = None
|
||||
else:
|
||||
N = shape(noise, 1)
|
||||
B = shape(noise, 0)
|
||||
seq_len_2d = concat([1, N])
|
||||
max_position_embeddings = 4096
|
||||
# create position ids
|
||||
position_ids_buffer = constant(np.expand_dims(np.arange(max_position_embeddings).astype(np.int32), 0))
|
||||
tmp_position_ids = slice(position_ids_buffer, starts=[0, 0], sizes=seq_len_2d)
|
||||
tmp_position_ids = expand(tmp_position_ids, concat([B, N])) # [B, N]
|
||||
tmp_input_lengths = unsqueeze(input_lengths, 1) # [B, 1]
|
||||
tmp_input_lengths = expand(tmp_input_lengths, concat([B, N])) # [B, N]
|
||||
mask = tmp_position_ids < tmp_input_lengths # [B, N]
|
||||
mask = mask.cast("int32")
|
||||
|
||||
t = self.time_embed(time)
|
||||
x = self.input_embed(noise, cond, mask=mask)
|
||||
for block in self.transformer_blocks:
|
||||
x = block(x, t, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale, mask=mask)
|
||||
denoise = self.proj_out(self.norm_out(x, t))
|
||||
denoise.mark_output("denoised", self.dtype)
|
||||
return denoise
|
||||
|
||||
def prepare_inputs(self, **kwargs):
|
||||
max_batch_size = kwargs["max_batch_size"]
|
||||
batch_size_range = [2, 2, max_batch_size]
|
||||
mel_size = self.config.mel_dim
|
||||
max_seq_len = 3000 # 4096
|
||||
num_frames_range = [mel_size * 2, max_seq_len * 2, max_seq_len * max_batch_size]
|
||||
concat_feature_dim = mel_size + self.config.text_dim
|
||||
freq_embed_dim = 256 # Warning: hard coding 256 here
|
||||
head_dim = self.config.dim_head
|
||||
mapping = self.config.mapping
|
||||
if mapping.tp_size > 1:
|
||||
current_all_reduce_helper().set_workspace_tensor(mapping, 1)
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
noise = Tensor(
|
||||
name="noise",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, mel_size],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("num_frames", [num_frames_range]),
|
||||
("n_mels", [mel_size]),
|
||||
]
|
||||
),
|
||||
)
|
||||
cond = Tensor(
|
||||
name="cond",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, concat_feature_dim],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("num_frames", [num_frames_range]),
|
||||
("embeded_length", [concat_feature_dim]),
|
||||
]
|
||||
),
|
||||
)
|
||||
time = Tensor(
|
||||
name="time",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, freq_embed_dim],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("num_frames", [num_frames_range]),
|
||||
("freq_dim", [freq_embed_dim]),
|
||||
]
|
||||
),
|
||||
)
|
||||
rope_cos = Tensor(
|
||||
name="rope_cos",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, head_dim],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("num_frames", [num_frames_range]),
|
||||
("head_dim", [head_dim]),
|
||||
]
|
||||
),
|
||||
)
|
||||
rope_sin = Tensor(
|
||||
name="rope_sin",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, head_dim],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("num_frames", [num_frames_range]),
|
||||
("head_dim", [head_dim]),
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
else:
|
||||
noise = Tensor(
|
||||
name="noise",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, -1, mel_size],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("batch_size", [batch_size_range]),
|
||||
("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
|
||||
("n_mels", [mel_size]),
|
||||
]
|
||||
),
|
||||
)
|
||||
cond = Tensor(
|
||||
name="cond",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, -1, concat_feature_dim],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("batch_size", [batch_size_range]),
|
||||
("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
|
||||
("embeded_length", [concat_feature_dim]),
|
||||
]
|
||||
),
|
||||
)
|
||||
time = Tensor(
|
||||
name="time",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, freq_embed_dim],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("batch_size", [batch_size_range]),
|
||||
("freq_dim", [freq_embed_dim]),
|
||||
]
|
||||
),
|
||||
)
|
||||
rope_cos = Tensor(
|
||||
name="rope_cos",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, -1, head_dim],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("batch_size", [batch_size_range]),
|
||||
("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
|
||||
("head_dim", [head_dim]),
|
||||
]
|
||||
),
|
||||
)
|
||||
rope_sin = Tensor(
|
||||
name="rope_sin",
|
||||
dtype=self.dtype,
|
||||
shape=[-1, -1, head_dim],
|
||||
dim_range=OrderedDict(
|
||||
[
|
||||
("batch_size", [batch_size_range]),
|
||||
("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
|
||||
("head_dim", [head_dim]),
|
||||
]
|
||||
),
|
||||
)
|
||||
input_lengths = Tensor(
|
||||
name="input_lengths",
|
||||
dtype=trt.int32,
|
||||
shape=[-1],
|
||||
dim_range=OrderedDict([("batch_size", [batch_size_range])]),
|
||||
)
|
||||
return {
|
||||
"noise": noise,
|
||||
"cond": cond,
|
||||
"time": time,
|
||||
"rope_cos": rope_cos,
|
||||
"rope_sin": rope_sin,
|
||||
"input_lengths": input_lengths,
|
||||
}
|
||||
434
src/f5_tts/runtime/triton_trtllm/patch/f5tts/modules.py
Normal file
434
src/f5_tts/runtime/triton_trtllm/patch/f5tts/modules.py
Normal file
@@ -0,0 +1,434 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from tensorrt_llm._common import default_net
|
||||
|
||||
from ..._utils import str_dtype_to_trt, trt_dtype_to_np
|
||||
from ...functional import (
|
||||
Tensor,
|
||||
bert_attention,
|
||||
cast,
|
||||
chunk,
|
||||
concat,
|
||||
constant,
|
||||
expand_dims,
|
||||
expand_dims_like,
|
||||
expand_mask,
|
||||
gelu,
|
||||
matmul,
|
||||
permute,
|
||||
shape,
|
||||
silu,
|
||||
slice,
|
||||
softmax,
|
||||
squeeze,
|
||||
unsqueeze,
|
||||
view,
|
||||
)
|
||||
from ...layers import ColumnLinear, Conv1d, LayerNorm, Linear, Mish, RowLinear
|
||||
from ...module import Module
|
||||
|
||||
|
||||
class FeedForward(Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = dim_out if dim_out is not None else dim
|
||||
|
||||
self.project_in = Linear(dim, inner_dim)
|
||||
self.ff = Linear(inner_dim, dim_out)
|
||||
|
||||
def forward(self, x):
|
||||
return self.ff(gelu(self.project_in(x)))
|
||||
|
||||
|
||||
class AdaLayerNormZero(Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
|
||||
self.linear = Linear(dim, dim * 6)
|
||||
self.norm = LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
|
||||
def forward(self, x, emb=None):
|
||||
emb = self.linear(silu(emb))
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = chunk(emb, 6, dim=1)
|
||||
x = self.norm(x)
|
||||
ones = constant(np.ones(1, dtype=np.float32)).cast(x.dtype)
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
x = x * (ones + scale_msa) + shift_msa
|
||||
else:
|
||||
x = x * (ones + unsqueeze(scale_msa, 1)) + unsqueeze(shift_msa, 1)
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
class AdaLayerNormZero_Final(Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
|
||||
self.linear = Linear(dim, dim * 2)
|
||||
|
||||
self.norm = LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
|
||||
def forward(self, x, emb):
|
||||
emb = self.linear(silu(emb))
|
||||
scale, shift = chunk(emb, 2, dim=1)
|
||||
ones = constant(np.ones(1, dtype=np.float32)).cast(x.dtype)
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
x = self.norm(x) * (ones + scale) + shift
|
||||
else:
|
||||
x = self.norm(x) * unsqueeze((ones + scale), 1)
|
||||
x = x + unsqueeze(shift, 1)
|
||||
return x
|
||||
|
||||
|
||||
class ConvPositionEmbedding(Module):
|
||||
def __init__(self, dim, kernel_size=31, groups=16):
|
||||
super().__init__()
|
||||
assert kernel_size % 2 != 0
|
||||
self.conv1d1 = Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2)
|
||||
self.conv1d2 = Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2)
|
||||
self.mish = Mish()
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
x = unsqueeze(x, 0)
|
||||
if mask is not None:
|
||||
mask = mask.view(concat([shape(mask, 0), 1, shape(mask, 1)])) # [B 1 N]
|
||||
mask = expand_dims_like(mask, x) # [B D N]
|
||||
mask = cast(mask, x.dtype)
|
||||
x = permute(x, [0, 2, 1]) # [B D N]
|
||||
|
||||
if mask is not None:
|
||||
x = self.mish(self.conv1d2(self.mish(self.conv1d1(x * mask) * mask)) * mask)
|
||||
else:
|
||||
x = self.mish(self.conv1d2(self.mish(self.conv1d1(x))))
|
||||
|
||||
x = permute(x, [0, 2, 1]) # [B N D]
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
x = squeeze(x, 0)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(
|
||||
self,
|
||||
processor: AttnProcessor,
|
||||
dim: int,
|
||||
heads: int = 16,
|
||||
dim_head: int = 64,
|
||||
dropout: float = 0.0,
|
||||
context_dim: Optional[int] = None, # if not None -> joint attention
|
||||
context_pre_only=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
self.processor = processor
|
||||
|
||||
self.dim = dim # hidden_size
|
||||
self.heads = heads
|
||||
self.inner_dim = dim_head * heads
|
||||
self.dropout = dropout
|
||||
self.attention_head_size = dim_head
|
||||
self.context_dim = context_dim
|
||||
self.context_pre_only = context_pre_only
|
||||
self.tp_size = 1
|
||||
self.num_attention_heads = heads // self.tp_size
|
||||
self.num_attention_kv_heads = heads // self.tp_size # 8
|
||||
self.dtype = str_dtype_to_trt("float32")
|
||||
self.attention_hidden_size = self.attention_head_size * self.num_attention_heads
|
||||
self.to_q = ColumnLinear(
|
||||
dim,
|
||||
self.tp_size * self.num_attention_heads * self.attention_head_size,
|
||||
bias=True,
|
||||
dtype=self.dtype,
|
||||
tp_group=None,
|
||||
tp_size=self.tp_size,
|
||||
)
|
||||
self.to_k = ColumnLinear(
|
||||
dim,
|
||||
self.tp_size * self.num_attention_heads * self.attention_head_size,
|
||||
bias=True,
|
||||
dtype=self.dtype,
|
||||
tp_group=None,
|
||||
tp_size=self.tp_size,
|
||||
)
|
||||
self.to_v = ColumnLinear(
|
||||
dim,
|
||||
self.tp_size * self.num_attention_heads * self.attention_head_size,
|
||||
bias=True,
|
||||
dtype=self.dtype,
|
||||
tp_group=None,
|
||||
tp_size=self.tp_size,
|
||||
)
|
||||
|
||||
if self.context_dim is not None:
|
||||
self.to_k_c = Linear(context_dim, self.inner_dim)
|
||||
self.to_v_c = Linear(context_dim, self.inner_dim)
|
||||
if self.context_pre_only is not None:
|
||||
self.to_q_c = Linear(context_dim, self.inner_dim)
|
||||
|
||||
self.to_out = RowLinear(
|
||||
self.tp_size * self.num_attention_heads * self.attention_head_size,
|
||||
dim,
|
||||
bias=True,
|
||||
dtype=self.dtype,
|
||||
tp_group=None,
|
||||
tp_size=self.tp_size,
|
||||
)
|
||||
|
||||
if self.context_pre_only is not None and not self.context_pre_only:
|
||||
self.to_out_c = Linear(self.inner_dim, dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x, # noised input x
|
||||
rope_cos,
|
||||
rope_sin,
|
||||
input_lengths,
|
||||
mask=None,
|
||||
c=None, # context c
|
||||
scale=1.0,
|
||||
rope=None,
|
||||
c_rope=None, # rotary position embedding for c
|
||||
) -> torch.Tensor:
|
||||
if c is not None:
|
||||
return self.processor(self, x, c=c, input_lengths=input_lengths, scale=scale, rope=rope, c_rope=c_rope)
|
||||
else:
|
||||
return self.processor(
|
||||
self, x, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale
|
||||
)
|
||||
|
||||
|
||||
def rotate_every_two_3dim(tensor: Tensor) -> Tensor:
|
||||
shape_tensor = concat(
|
||||
[shape(tensor, i) / 2 if i == (tensor.ndim() - 1) else shape(tensor, i) for i in range(tensor.ndim())]
|
||||
)
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
assert tensor.ndim() == 2
|
||||
x1 = slice(tensor, [0, 0], shape_tensor, [1, 2])
|
||||
x2 = slice(tensor, [0, 1], shape_tensor, [1, 2])
|
||||
x1 = expand_dims(x1, 2)
|
||||
x2 = expand_dims(x2, 2)
|
||||
zero = constant(np.ascontiguousarray(np.zeros([1], dtype=trt_dtype_to_np(tensor.dtype))))
|
||||
x2 = zero - x2
|
||||
x = concat([x2, x1], 2)
|
||||
out = view(x, concat([shape(x, 0), shape(x, 1) * 2]))
|
||||
else:
|
||||
assert tensor.ndim() == 3
|
||||
|
||||
x1 = slice(tensor, [0, 0, 0], shape_tensor, [1, 1, 2])
|
||||
x2 = slice(tensor, [0, 0, 1], shape_tensor, [1, 1, 2])
|
||||
x1 = expand_dims(x1, 3)
|
||||
x2 = expand_dims(x2, 3)
|
||||
zero = constant(np.ascontiguousarray(np.zeros([1], dtype=trt_dtype_to_np(tensor.dtype))))
|
||||
x2 = zero - x2
|
||||
x = concat([x2, x1], 3)
|
||||
out = view(x, concat([shape(x, 0), shape(x, 1), shape(x, 2) * 2]))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def apply_rotary_pos_emb_3dim(x, rope_cos, rope_sin, pe_attn_head):
|
||||
full_dim = x.size(-1)
|
||||
head_dim = rope_cos.size(-1) # attn head dim, e.g. 64
|
||||
if pe_attn_head is None:
|
||||
pe_attn_head = full_dim // head_dim
|
||||
rotated_dim = head_dim * pe_attn_head
|
||||
|
||||
rotated_and_unrotated_list = []
|
||||
|
||||
if default_net().plugin_config.remove_input_padding: # for [N, D] input
|
||||
new_t_shape = concat([shape(x, 0), head_dim]) # (2, -1, 64)
|
||||
|
||||
for i in range(pe_attn_head):
|
||||
x_slice_i = slice(x, [0, i * 64], new_t_shape, [1, 1])
|
||||
x_rotated_i = x_slice_i * rope_cos + rotate_every_two_3dim(x_slice_i) * rope_sin
|
||||
rotated_and_unrotated_list.append(x_rotated_i)
|
||||
|
||||
new_t_unrotated_shape = concat([shape(x, 0), full_dim - rotated_dim]) # (2, -1, 1024 - 64 * pe_attn_head)
|
||||
x_unrotated = slice(x, concat([0, rotated_dim]), new_t_unrotated_shape, [1, 1])
|
||||
rotated_and_unrotated_list.append(x_unrotated)
|
||||
|
||||
else: # for [B, N, D] input
|
||||
new_t_shape = concat([shape(x, 0), shape(x, 1), head_dim]) # (2, -1, 64)
|
||||
|
||||
for i in range(pe_attn_head):
|
||||
x_slice_i = slice(x, [0, 0, i * 64], new_t_shape, [1, 1, 1])
|
||||
x_rotated_i = x_slice_i * rope_cos + rotate_every_two_3dim(x_slice_i) * rope_sin
|
||||
rotated_and_unrotated_list.append(x_rotated_i)
|
||||
|
||||
new_t_unrotated_shape = concat(
|
||||
[shape(x, 0), shape(x, 1), full_dim - rotated_dim]
|
||||
) # (2, -1, 1024 - 64 * pe_attn_head)
|
||||
x_unrotated = slice(x, concat([0, 0, rotated_dim]), new_t_unrotated_shape, [1, 1, 1])
|
||||
rotated_and_unrotated_list.append(x_unrotated)
|
||||
|
||||
out = concat(rotated_and_unrotated_list, dim=-1)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class AttnProcessor:
|
||||
def __init__(
|
||||
self,
|
||||
pe_attn_head: Optional[int] = None, # number of attention head to apply rope, None for all
|
||||
):
|
||||
self.pe_attn_head = pe_attn_head
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
x, # noised input x
|
||||
rope_cos,
|
||||
rope_sin,
|
||||
input_lengths,
|
||||
scale=1.0,
|
||||
rope=None,
|
||||
mask=None,
|
||||
) -> torch.FloatTensor:
|
||||
query = attn.to_q(x)
|
||||
key = attn.to_k(x)
|
||||
value = attn.to_v(x)
|
||||
# k,v,q all (2,1226,1024)
|
||||
query = apply_rotary_pos_emb_3dim(query, rope_cos, rope_sin, self.pe_attn_head)
|
||||
key = apply_rotary_pos_emb_3dim(key, rope_cos, rope_sin, self.pe_attn_head)
|
||||
|
||||
# attention
|
||||
inner_dim = key.shape[-1]
|
||||
norm_factor = math.sqrt(attn.attention_head_size)
|
||||
q_scaling = 1.0 / norm_factor
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
mask = None
|
||||
|
||||
if default_net().plugin_config.bert_attention_plugin:
|
||||
qkv = concat([query, key, value], dim=-1)
|
||||
# TRT plugin mode
|
||||
assert input_lengths is not None
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
qkv = qkv.view(concat([-1, 3 * inner_dim]))
|
||||
max_input_length = constant(
|
||||
np.zeros(
|
||||
[
|
||||
2048,
|
||||
],
|
||||
dtype=np.int32,
|
||||
)
|
||||
)
|
||||
else:
|
||||
max_input_length = None
|
||||
context = bert_attention(
|
||||
qkv,
|
||||
input_lengths,
|
||||
attn.num_attention_heads,
|
||||
attn.attention_head_size,
|
||||
q_scaling=q_scaling,
|
||||
max_input_length=max_input_length,
|
||||
)
|
||||
else:
|
||||
assert not default_net().plugin_config.remove_input_padding
|
||||
|
||||
def transpose_for_scores(x):
|
||||
new_x_shape = concat([shape(x, 0), shape(x, 1), attn.num_attention_heads, attn.attention_head_size])
|
||||
|
||||
y = x.view(new_x_shape)
|
||||
y = y.transpose(1, 2)
|
||||
return y
|
||||
|
||||
def transpose_for_scores_k(x):
|
||||
new_x_shape = concat([shape(x, 0), shape(x, 1), attn.num_attention_heads, attn.attention_head_size])
|
||||
|
||||
y = x.view(new_x_shape)
|
||||
y = y.permute([0, 2, 3, 1])
|
||||
return y
|
||||
|
||||
query = transpose_for_scores(query)
|
||||
key = transpose_for_scores_k(key)
|
||||
value = transpose_for_scores(value)
|
||||
|
||||
attention_scores = matmul(query, key, use_fp32_acc=False)
|
||||
|
||||
if mask is not None:
|
||||
attention_mask = expand_mask(mask, shape(query, 2))
|
||||
attention_mask = cast(attention_mask, attention_scores.dtype)
|
||||
attention_scores = attention_scores + attention_mask
|
||||
|
||||
attention_probs = softmax(attention_scores, dim=-1)
|
||||
|
||||
context = matmul(attention_probs, value, use_fp32_acc=False).transpose(1, 2)
|
||||
context = context.view(concat([shape(context, 0), shape(context, 1), attn.attention_hidden_size]))
|
||||
context = attn.to_out(context)
|
||||
if mask is not None:
|
||||
mask = mask.view(concat([shape(mask, 0), shape(mask, 1), 1]))
|
||||
mask = expand_dims_like(mask, context)
|
||||
mask = cast(mask, context.dtype)
|
||||
context = context * mask
|
||||
return context
|
||||
|
||||
|
||||
# DiT Block
|
||||
class DiTBlock(Module):
|
||||
def __init__(self, dim, heads, dim_head, ff_mult=2, dropout=0.1, pe_attn_head=None):
|
||||
super().__init__()
|
||||
|
||||
self.attn_norm = AdaLayerNormZero(dim)
|
||||
self.attn = Attention(
|
||||
processor=AttnProcessor(pe_attn_head=pe_attn_head),
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
self.ff_norm = LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout)
|
||||
|
||||
def forward(
|
||||
self, x, t, rope_cos, rope_sin, input_lengths, scale=1.0, rope=ModuleNotFoundError, mask=None
|
||||
): # x: noised input, t: time embedding
|
||||
# pre-norm & modulation for attention input
|
||||
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
||||
# attention
|
||||
# norm ----> (2,1226,1024)
|
||||
attn_output = self.attn(
|
||||
x=norm, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale, mask=mask
|
||||
)
|
||||
# process attention output for input x
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
x = x + gate_msa * attn_output
|
||||
else:
|
||||
x = x + unsqueeze(gate_msa, 1) * attn_output
|
||||
ones = constant(np.ones(1, dtype=np.float32)).cast(x.dtype)
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
norm = self.ff_norm(x) * (ones + scale_mlp) + shift_mlp
|
||||
else:
|
||||
norm = self.ff_norm(x) * (ones + unsqueeze(scale_mlp, 1)) + unsqueeze(shift_mlp, 1)
|
||||
# norm = self.ff_norm(x) * (ones + scale_mlp) + shift_mlp
|
||||
ff_output = self.ff(norm)
|
||||
if default_net().plugin_config.remove_input_padding:
|
||||
x = x + gate_mlp * ff_output
|
||||
else:
|
||||
x = x + unsqueeze(gate_mlp, 1) * ff_output
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TimestepEmbedding(Module):
|
||||
def __init__(self, dim, freq_embed_dim=256, dtype=None):
|
||||
super().__init__()
|
||||
# self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
||||
self.mlp1 = Linear(freq_embed_dim, dim, bias=True, dtype=dtype)
|
||||
self.mlp2 = Linear(dim, dim, bias=True, dtype=dtype)
|
||||
|
||||
def forward(self, timestep):
|
||||
t_freq = self.mlp1(timestep)
|
||||
t_freq = silu(t_freq)
|
||||
t_emb = self.mlp2(t_freq)
|
||||
return t_emb
|
||||
112
src/f5_tts/runtime/triton_trtllm/run.sh
Normal file
112
src/f5_tts/runtime/triton_trtllm/run.sh
Normal file
@@ -0,0 +1,112 @@
|
||||
stage=$1
|
||||
stop_stage=$2
|
||||
model=$3 # F5TTS_v1_Base | F5TTS_Base | F5TTS_v1_Small | F5TTS_Small
|
||||
if [ -z "$model" ]; then
|
||||
model=F5TTS_v1_Base
|
||||
fi
|
||||
echo "Start stage: $stage, Stop stage: $stop_stage, Model: $model"
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
CKPT_DIR=../../../../ckpts
|
||||
TRTLLM_CKPT_DIR=$CKPT_DIR/$model/trtllm_ckpt
|
||||
TRTLLM_ENGINE_DIR=$CKPT_DIR/$model/trtllm_engine
|
||||
|
||||
VOCODER_ONNX_PATH=$CKPT_DIR/vocos_vocoder.onnx
|
||||
VOCODER_TRT_ENGINE_PATH=$CKPT_DIR/vocos_vocoder.plan
|
||||
MODEL_REPO=./model_repo
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
echo "Downloading F5-TTS from huggingface"
|
||||
huggingface-cli download SWivid/F5-TTS $model/model_*.* $model/vocab.txt --local-dir $CKPT_DIR
|
||||
fi
|
||||
|
||||
ckpt_file=$(ls $CKPT_DIR/$model/model_*.* 2>/dev/null | sort -V | tail -1) # default select latest update
|
||||
vocab_file=$CKPT_DIR/$model/vocab.txt
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
echo "Converting checkpoint"
|
||||
python3 scripts/convert_checkpoint.py \
|
||||
--pytorch_ckpt $ckpt_file \
|
||||
--output_dir $TRTLLM_CKPT_DIR --model_name $model
|
||||
python_package_path=/usr/local/lib/python3.12/dist-packages
|
||||
cp -r patch/* $python_package_path/tensorrt_llm/models
|
||||
trtllm-build --checkpoint_dir $TRTLLM_CKPT_DIR \
|
||||
--max_batch_size 8 \
|
||||
--output_dir $TRTLLM_ENGINE_DIR --remove_input_padding disable
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
echo "Exporting vocos vocoder"
|
||||
python3 scripts/export_vocoder_to_onnx.py --vocoder vocos --output-path $VOCODER_ONNX_PATH
|
||||
bash scripts/export_vocos_trt.sh $VOCODER_ONNX_PATH $VOCODER_TRT_ENGINE_PATH
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
echo "Building triton server"
|
||||
rm -r $MODEL_REPO
|
||||
cp -r ./model_repo_f5_tts $MODEL_REPO
|
||||
python3 scripts/fill_template.py -i $MODEL_REPO/f5_tts/config.pbtxt vocab:$vocab_file,model:$ckpt_file,trtllm:$TRTLLM_ENGINE_DIR,vocoder:vocos
|
||||
cp $VOCODER_TRT_ENGINE_PATH $MODEL_REPO/vocoder/1/vocoder.plan
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
echo "Starting triton server"
|
||||
tritonserver --model-repository=$MODEL_REPO
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
echo "Testing triton server"
|
||||
num_task=1
|
||||
split_name=wenetspeech4tts
|
||||
log_dir=./tests/client_grpc_${model}_concurrent_${num_task}_${split_name}
|
||||
rm -r $log_dir
|
||||
python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name $split_name --log-dir $log_dir
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
echo "Testing http client"
|
||||
audio=../../infer/examples/basic/basic_ref_en.wav
|
||||
reference_text="Some call me nature, others call me mother nature."
|
||||
target_text="I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring."
|
||||
python3 client_http.py --reference-audio $audio --reference-text "$reference_text" --target-text "$target_text" --output-audio "./tests/client_http_$model.wav"
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
echo "TRT-LLM: offline decoding benchmark test"
|
||||
batch_size=2
|
||||
split_name=wenetspeech4tts
|
||||
backend_type=trt
|
||||
log_dir=./tests/benchmark_${model}_batch_size_${batch_size}_${split_name}_${backend_type}
|
||||
rm -r $log_dir
|
||||
torchrun --nproc_per_node=1 \
|
||||
benchmark.py --output-dir $log_dir \
|
||||
--batch-size $batch_size \
|
||||
--enable-warmup \
|
||||
--split-name $split_name \
|
||||
--model-path $ckpt_file \
|
||||
--vocab-file $vocab_file \
|
||||
--vocoder-trt-engine-path $VOCODER_TRT_ENGINE_PATH \
|
||||
--backend-type $backend_type \
|
||||
--tllm-model-dir $TRTLLM_ENGINE_DIR || exit 1
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
echo "Native Pytorch: offline decoding benchmark test"
|
||||
if ! python3 -c "import f5_tts" &> /dev/null; then
|
||||
pip install -e ../../../../
|
||||
fi
|
||||
batch_size=1 # set attn_mask_enabled=True if batching in actual use case
|
||||
split_name=wenetspeech4tts
|
||||
backend_type=pytorch
|
||||
log_dir=./tests/benchmark_${model}_batch_size_${batch_size}_${split_name}_${backend_type}
|
||||
rm -r $log_dir
|
||||
torchrun --nproc_per_node=1 \
|
||||
benchmark.py --output-dir $log_dir \
|
||||
--batch-size $batch_size \
|
||||
--split-name $split_name \
|
||||
--enable-warmup \
|
||||
--model-path $ckpt_file \
|
||||
--vocab-file $vocab_file \
|
||||
--backend-type $backend_type \
|
||||
--tllm-model-dir $TRTLLM_ENGINE_DIR || exit 1
|
||||
fi
|
||||
248
src/f5_tts/runtime/triton_trtllm/scripts/conv_stft.py
Normal file
248
src/f5_tts/runtime/triton_trtllm/scripts/conv_stft.py
Normal file
@@ -0,0 +1,248 @@
|
||||
# Modified from https://github.com/echocatzh/conv-stft/blob/master/conv_stft/conv_stft.py
|
||||
|
||||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# MIT License
|
||||
|
||||
# Copyright (c) 2020 Shimin Zhang
|
||||
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
import torch as th
|
||||
import torch.nn.functional as F
|
||||
from scipy.signal import check_COLA, get_window
|
||||
|
||||
|
||||
support_clp_op = None
|
||||
if th.__version__ >= "1.7.0":
|
||||
from torch.fft import rfft as fft
|
||||
|
||||
support_clp_op = True
|
||||
else:
|
||||
from torch import rfft as fft
|
||||
|
||||
|
||||
class STFT(th.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
win_len=1024,
|
||||
win_hop=512,
|
||||
fft_len=1024,
|
||||
enframe_mode="continue",
|
||||
win_type="hann",
|
||||
win_sqrt=False,
|
||||
pad_center=True,
|
||||
):
|
||||
"""
|
||||
Implement of STFT using 1D convolution and 1D transpose convolutions.
|
||||
Implement of framing the signal in 2 ways, `break` and `continue`.
|
||||
`break` method is a kaldi-like framing.
|
||||
`continue` method is a librosa-like framing.
|
||||
|
||||
More information about `perfect reconstruction`:
|
||||
1. https://ww2.mathworks.cn/help/signal/ref/stft.html
|
||||
2. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html
|
||||
|
||||
Args:
|
||||
win_len (int): Number of points in one frame. Defaults to 1024.
|
||||
win_hop (int): Number of framing stride. Defaults to 512.
|
||||
fft_len (int): Number of DFT points. Defaults to 1024.
|
||||
enframe_mode (str, optional): `break` and `continue`. Defaults to 'continue'.
|
||||
win_type (str, optional): The type of window to create. Defaults to 'hann'.
|
||||
win_sqrt (bool, optional): using square root window. Defaults to True.
|
||||
pad_center (bool, optional): `perfect reconstruction` opts. Defaults to True.
|
||||
"""
|
||||
super(STFT, self).__init__()
|
||||
assert enframe_mode in ["break", "continue"]
|
||||
assert fft_len >= win_len
|
||||
self.win_len = win_len
|
||||
self.win_hop = win_hop
|
||||
self.fft_len = fft_len
|
||||
self.mode = enframe_mode
|
||||
self.win_type = win_type
|
||||
self.win_sqrt = win_sqrt
|
||||
self.pad_center = pad_center
|
||||
self.pad_amount = self.fft_len // 2
|
||||
|
||||
en_k, fft_k, ifft_k, ola_k = self.__init_kernel__()
|
||||
self.register_buffer("en_k", en_k)
|
||||
self.register_buffer("fft_k", fft_k)
|
||||
self.register_buffer("ifft_k", ifft_k)
|
||||
self.register_buffer("ola_k", ola_k)
|
||||
|
||||
def __init_kernel__(self):
|
||||
"""
|
||||
Generate enframe_kernel, fft_kernel, ifft_kernel and overlap-add kernel.
|
||||
** enframe_kernel: Using conv1d layer and identity matrix.
|
||||
** fft_kernel: Using linear layer for matrix multiplication. In fact,
|
||||
enframe_kernel and fft_kernel can be combined, But for the sake of
|
||||
readability, I took the two apart.
|
||||
** ifft_kernel, pinv of fft_kernel.
|
||||
** overlap-add kernel, just like enframe_kernel, but transposed.
|
||||
|
||||
Returns:
|
||||
tuple: four kernels.
|
||||
"""
|
||||
enframed_kernel = th.eye(self.fft_len)[:, None, :]
|
||||
if support_clp_op:
|
||||
tmp = fft(th.eye(self.fft_len))
|
||||
fft_kernel = th.stack([tmp.real, tmp.imag], dim=2)
|
||||
else:
|
||||
fft_kernel = fft(th.eye(self.fft_len), 1)
|
||||
if self.mode == "break":
|
||||
enframed_kernel = th.eye(self.win_len)[:, None, :]
|
||||
fft_kernel = fft_kernel[: self.win_len]
|
||||
fft_kernel = th.cat((fft_kernel[:, :, 0], fft_kernel[:, :, 1]), dim=1)
|
||||
ifft_kernel = th.pinverse(fft_kernel)[:, None, :]
|
||||
window = get_window(self.win_type, self.win_len)
|
||||
|
||||
self.perfect_reconstruct = check_COLA(window, self.win_len, self.win_len - self.win_hop)
|
||||
window = th.FloatTensor(window)
|
||||
if self.mode == "continue":
|
||||
left_pad = (self.fft_len - self.win_len) // 2
|
||||
right_pad = left_pad + (self.fft_len - self.win_len) % 2
|
||||
window = F.pad(window, (left_pad, right_pad))
|
||||
if self.win_sqrt:
|
||||
self.padded_window = window
|
||||
window = th.sqrt(window)
|
||||
else:
|
||||
self.padded_window = window**2
|
||||
|
||||
fft_kernel = fft_kernel.T * window
|
||||
ifft_kernel = ifft_kernel * window
|
||||
ola_kernel = th.eye(self.fft_len)[: self.win_len, None, :]
|
||||
if self.mode == "continue":
|
||||
ola_kernel = th.eye(self.fft_len)[:, None, : self.fft_len]
|
||||
return enframed_kernel, fft_kernel, ifft_kernel, ola_kernel
|
||||
|
||||
def is_perfect(self):
|
||||
"""
|
||||
Whether the parameters win_len, win_hop and win_sqrt
|
||||
obey constants overlap-add(COLA)
|
||||
|
||||
Returns:
|
||||
bool: Return true if parameters obey COLA.
|
||||
"""
|
||||
return self.perfect_reconstruct and self.pad_center
|
||||
|
||||
def transform(self, inputs, return_type="complex"):
|
||||
"""Take input data (audio) to STFT domain.
|
||||
|
||||
Args:
|
||||
inputs (tensor): Tensor of floats, with shape (num_batch, num_samples)
|
||||
return_type (str, optional): return (mag, phase) when `magphase`,
|
||||
return (real, imag) when `realimag` and complex(real, imag) when `complex`.
|
||||
Defaults to 'complex'.
|
||||
|
||||
Returns:
|
||||
tuple: (mag, phase) when `magphase`, return (real, imag) when
|
||||
`realimag`. Defaults to 'complex', each elements with shape
|
||||
[num_batch, num_frequencies, num_frames]
|
||||
"""
|
||||
assert return_type in ["magphase", "realimag", "complex"]
|
||||
if inputs.dim() == 2:
|
||||
inputs = th.unsqueeze(inputs, 1)
|
||||
self.num_samples = inputs.size(-1)
|
||||
if self.pad_center:
|
||||
inputs = F.pad(inputs, (self.pad_amount, self.pad_amount), mode="reflect")
|
||||
enframe_inputs = F.conv1d(inputs, self.en_k, stride=self.win_hop)
|
||||
outputs = th.transpose(enframe_inputs, 1, 2)
|
||||
outputs = F.linear(outputs, self.fft_k)
|
||||
outputs = th.transpose(outputs, 1, 2)
|
||||
dim = self.fft_len // 2 + 1
|
||||
real = outputs[:, :dim, :]
|
||||
imag = outputs[:, dim:, :]
|
||||
if return_type == "realimag":
|
||||
return real, imag
|
||||
elif return_type == "complex":
|
||||
assert support_clp_op
|
||||
return th.complex(real, imag)
|
||||
else:
|
||||
mags = th.sqrt(real**2 + imag**2)
|
||||
phase = th.atan2(imag, real)
|
||||
return mags, phase
|
||||
|
||||
def inverse(self, input1, input2=None, input_type="magphase"):
|
||||
"""Call the inverse STFT (iSTFT), given tensors produced
|
||||
by the `transform` function.
|
||||
|
||||
Args:
|
||||
input1 (tensors): Magnitude/Real-part of STFT with shape
|
||||
[num_batch, num_frequencies, num_frames]
|
||||
input2 (tensors): Phase/Imag-part of STFT with shape
|
||||
[num_batch, num_frequencies, num_frames]
|
||||
input_type (str, optional): Mathematical meaning of input tensor's.
|
||||
Defaults to 'magphase'.
|
||||
|
||||
Returns:
|
||||
tensors: Reconstructed audio given magnitude and phase. Of
|
||||
shape [num_batch, num_samples]
|
||||
"""
|
||||
assert input_type in ["magphase", "realimag"]
|
||||
if input_type == "realimag":
|
||||
real, imag = None, None
|
||||
if support_clp_op and th.is_complex(input1):
|
||||
real, imag = input1.real, input1.imag
|
||||
else:
|
||||
real, imag = input1, input2
|
||||
else:
|
||||
real = input1 * th.cos(input2)
|
||||
imag = input1 * th.sin(input2)
|
||||
inputs = th.cat([real, imag], dim=1)
|
||||
outputs = F.conv_transpose1d(inputs, self.ifft_k, stride=self.win_hop)
|
||||
t = (self.padded_window[None, :, None]).repeat(1, 1, inputs.size(-1))
|
||||
t = t.to(inputs.device)
|
||||
coff = F.conv_transpose1d(t, self.ola_k, stride=self.win_hop)
|
||||
|
||||
num_frames = input1.size(-1)
|
||||
num_samples = num_frames * self.win_hop
|
||||
|
||||
rm_start, rm_end = self.pad_amount, self.pad_amount + num_samples
|
||||
|
||||
outputs = outputs[..., rm_start:rm_end]
|
||||
coff = coff[..., rm_start:rm_end]
|
||||
coffidx = th.where(coff > 1e-8)
|
||||
outputs[coffidx] = outputs[coffidx] / (coff[coffidx])
|
||||
return outputs.squeeze(dim=1)
|
||||
|
||||
def forward(self, inputs):
|
||||
"""Take input data (audio) to STFT domain and then back to audio.
|
||||
|
||||
Args:
|
||||
inputs (tensor): Tensor of floats, with shape [num_batch, num_samples]
|
||||
|
||||
Returns:
|
||||
tensor: Reconstructed audio given magnitude and phase.
|
||||
Of shape [num_batch, num_samples]
|
||||
"""
|
||||
mag, phase = self.transform(inputs)
|
||||
rec_wav = self.inverse(mag, phase)
|
||||
return rec_wav
|
||||
288
src/f5_tts/runtime/triton_trtllm/scripts/convert_checkpoint.py
Normal file
288
src/f5_tts/runtime/triton_trtllm/scripts/convert_checkpoint.py
Normal file
@@ -0,0 +1,288 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
import traceback
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
|
||||
import safetensors.torch
|
||||
import torch
|
||||
from tensorrt_llm import str_dtype_to_torch
|
||||
from tensorrt_llm.mapping import Mapping
|
||||
from tensorrt_llm.models.convert_utils import split, split_matrix_tp
|
||||
|
||||
|
||||
def split_q_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
||||
split_v = split(v, tensor_parallel, rank, dim=1)
|
||||
return split_v.contiguous()
|
||||
|
||||
|
||||
def split_q_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
||||
split_v = split(v, tensor_parallel, rank, dim=0)
|
||||
return split_v.contiguous()
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--pytorch_ckpt", type=str, default="./ckpts/model_last.pt")
|
||||
parser.add_argument(
|
||||
"--output_dir", type=str, default="./tllm_checkpoint", help="The path to save the TensorRT-LLM checkpoint"
|
||||
)
|
||||
parser.add_argument("--tp_size", type=int, default=1, help="N-way tensor parallelism size")
|
||||
parser.add_argument("--cp_size", type=int, default=1, help="Context parallelism size")
|
||||
parser.add_argument("--pp_size", type=int, default=1, help="N-way pipeline parallelism size")
|
||||
parser.add_argument("--dtype", type=str, default="float16", choices=["float32", "bfloat16", "float16"])
|
||||
parser.add_argument("--fp8_linear", action="store_true", help="Whether use FP8 for linear layers")
|
||||
parser.add_argument(
|
||||
"--workers", type=int, default=1, help="The number of workers for converting checkpoint in parallel"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
type=str,
|
||||
default="F5TTS_Custom",
|
||||
choices=[
|
||||
"F5TTS_v1_Base",
|
||||
"F5TTS_Base",
|
||||
"F5TTS_v1_Small",
|
||||
"F5TTS_Small",
|
||||
], # if set, overwrite the below hyperparams
|
||||
)
|
||||
parser.add_argument("--hidden_size", type=int, default=1024, help="The hidden size of DiT")
|
||||
parser.add_argument("--depth", type=int, default=22, help="The number of DiTBlock layers")
|
||||
parser.add_argument("--num_heads", type=int, default=16, help="The number of heads of attention module")
|
||||
parser.add_argument("--dim_head", type=int, default=64, help="The dimension of attention head")
|
||||
parser.add_argument("--ff_mult", type=int, default=2, help="The FFN intermediate dimension multiplier")
|
||||
parser.add_argument("--text_dim", type=int, default=512, help="The output dimension of text encoder")
|
||||
parser.add_argument(
|
||||
"--text_mask_padding",
|
||||
type=lambda x: x.lower() == "true",
|
||||
choices=[True, False],
|
||||
default=True,
|
||||
help="Whether apply padding mask for conv layers in text encoder",
|
||||
)
|
||||
parser.add_argument("--conv_layers", type=int, default=4, help="The number of conv layers of text encoder")
|
||||
parser.add_argument("--pe_attn_head", type=int, default=None, help="The number of attn head that apply pos emb")
|
||||
args = parser.parse_args()
|
||||
|
||||
# overwrite if --model_name ordered
|
||||
if args.model_name == "F5TTS_v1_Base":
|
||||
args.hidden_size = 1024
|
||||
args.depth = 22
|
||||
args.num_heads = 16
|
||||
args.dim_head = 64
|
||||
args.ff_mult = 2
|
||||
args.text_dim = 512
|
||||
args.text_mask_padding = True
|
||||
args.conv_layers = 4
|
||||
args.pe_attn_head = None
|
||||
elif args.model_name == "F5TTS_Base":
|
||||
args.hidden_size = 1024
|
||||
args.depth = 22
|
||||
args.num_heads = 16
|
||||
args.dim_head = 64
|
||||
args.ff_mult = 2
|
||||
args.text_dim = 512
|
||||
args.text_mask_padding = False
|
||||
args.conv_layers = 4
|
||||
args.pe_attn_head = 1
|
||||
elif args.model_name == "F5TTS_v1_Small":
|
||||
args.hidden_size = 768
|
||||
args.depth = 18
|
||||
args.num_heads = 12
|
||||
args.dim_head = 64
|
||||
args.ff_mult = 2
|
||||
args.text_dim = 512
|
||||
args.text_mask_padding = True
|
||||
args.conv_layers = 4
|
||||
args.pe_attn_head = None
|
||||
elif args.model_name == "F5TTS_Small":
|
||||
args.hidden_size = 768
|
||||
args.depth = 18
|
||||
args.num_heads = 12
|
||||
args.dim_head = 64
|
||||
args.ff_mult = 2
|
||||
args.text_dim = 512
|
||||
args.text_mask_padding = False
|
||||
args.conv_layers = 4
|
||||
args.pe_attn_head = 1
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def convert_pytorch_dit_to_trtllm_weight(args, mapping, dtype="float32", use_ema=True):
|
||||
weights = {}
|
||||
tik = time.time()
|
||||
torch_dtype = str_dtype_to_torch(dtype)
|
||||
tensor_parallel = mapping.tp_size
|
||||
|
||||
ckpt_path = args.pytorch_ckpt
|
||||
ckpt_type = ckpt_path.split(".")[-1]
|
||||
if ckpt_type == "safetensors":
|
||||
from safetensors.torch import load_file
|
||||
|
||||
model_params = load_file(ckpt_path)
|
||||
else:
|
||||
ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
||||
model_params = ckpt["ema_model_state_dict"] if use_ema else ckpt["model_state_dict"]
|
||||
|
||||
prefix = "ema_model.transformer." if use_ema else "transformer."
|
||||
if any(k.startswith(prefix) for k in model_params.keys()):
|
||||
model_params = {
|
||||
key[len(prefix) :] if key.startswith(prefix) else key: value
|
||||
for key, value in model_params.items()
|
||||
if key.startswith(prefix)
|
||||
}
|
||||
|
||||
pytorch_to_trtllm_name = {
|
||||
r"^time_embed\.time_mlp\.0\.(weight|bias)$": r"time_embed.mlp1.\1",
|
||||
r"^time_embed\.time_mlp\.2\.(weight|bias)$": r"time_embed.mlp2.\1",
|
||||
r"^input_embed\.conv_pos_embed\.conv1d\.0\.(weight|bias)$": r"input_embed.conv_pos_embed.conv1d1.\1",
|
||||
r"^input_embed\.conv_pos_embed\.conv1d\.2\.(weight|bias)$": r"input_embed.conv_pos_embed.conv1d2.\1",
|
||||
r"^transformer_blocks\.(\d+)\.attn\.to_out\.0\.(weight|bias)$": r"transformer_blocks.\1.attn.to_out.\2",
|
||||
r"^transformer_blocks\.(\d+)\.ff\.ff\.0\.0\.(weight|bias)$": r"transformer_blocks.\1.ff.project_in.\2",
|
||||
r"^transformer_blocks\.(\d+)\.ff\.ff\.2\.(weight|bias)$": r"transformer_blocks.\1.ff.ff.\2",
|
||||
}
|
||||
|
||||
def get_trtllm_name(pytorch_name):
|
||||
for pytorch_name_pattern, trtllm_name_replacement in pytorch_to_trtllm_name.items():
|
||||
trtllm_name_if_matched = re.sub(pytorch_name_pattern, trtllm_name_replacement, pytorch_name)
|
||||
if trtllm_name_if_matched != pytorch_name:
|
||||
return trtllm_name_if_matched
|
||||
return pytorch_name
|
||||
|
||||
weights = dict()
|
||||
for name, param in model_params.items():
|
||||
if name == "input_embed.conv_pos_embed.conv1d.0.weight" or name == "input_embed.conv_pos_embed.conv1d.2.weight":
|
||||
weights[get_trtllm_name(name)] = param.contiguous().to(torch_dtype).unsqueeze(-1)
|
||||
else:
|
||||
weights[get_trtllm_name(name)] = param.contiguous().to(torch_dtype)
|
||||
|
||||
assert len(weights) == len(model_params)
|
||||
|
||||
# new_prefix = "f5_transformer."
|
||||
new_prefix = ""
|
||||
weights = {new_prefix + key: value for key, value in weights.items()}
|
||||
import math
|
||||
|
||||
scale_factor = math.pow(64, -0.25)
|
||||
for k, v in weights.items():
|
||||
if re.match("^transformer_blocks.*.attn.to_k.weight$", k):
|
||||
weights[k] *= scale_factor
|
||||
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
||||
|
||||
elif re.match("^transformer_blocks.*.attn.to_k.bias$", k):
|
||||
weights[k] *= scale_factor
|
||||
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
||||
|
||||
elif re.match("^transformer_blocks.*.attn.to_q.weight$", k):
|
||||
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
||||
weights[k] *= scale_factor
|
||||
|
||||
elif re.match("^transformer_blocks.*.attn.to_q.bias$", k):
|
||||
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
||||
weights[k] *= scale_factor
|
||||
|
||||
elif re.match("^transformer_blocks.*.attn.to_v.weight$", k):
|
||||
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
||||
|
||||
elif re.match("^transformer_blocks.*.attn.to_v.bias$", k):
|
||||
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
|
||||
|
||||
elif re.match("^transformer_blocks.*.attn.to_out.weight$", k):
|
||||
weights[k] = split_matrix_tp(v, tensor_parallel, mapping.tp_rank, dim=1)
|
||||
|
||||
tok = time.time()
|
||||
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik))
|
||||
print(f"Weights loaded. Total time: {t}")
|
||||
return weights
|
||||
|
||||
|
||||
def save_config(args):
|
||||
if not os.path.exists(args.output_dir):
|
||||
os.makedirs(args.output_dir)
|
||||
config = {
|
||||
"architecture": "F5TTS", # set the same as in ../patch/__init__.py
|
||||
"dtype": args.dtype,
|
||||
"hidden_size": args.hidden_size,
|
||||
"num_hidden_layers": args.depth,
|
||||
"num_attention_heads": args.num_heads,
|
||||
"dim_head": args.dim_head,
|
||||
"dropout": 0.0, # inference-only
|
||||
"ff_mult": args.ff_mult,
|
||||
"mel_dim": 100,
|
||||
"text_dim": args.text_dim,
|
||||
"text_mask_padding": args.text_mask_padding,
|
||||
"conv_layers": args.conv_layers,
|
||||
"pe_attn_head": args.pe_attn_head,
|
||||
"mapping": {
|
||||
"world_size": args.cp_size * args.tp_size * args.pp_size,
|
||||
"cp_size": args.cp_size,
|
||||
"tp_size": args.tp_size,
|
||||
"pp_size": args.pp_size,
|
||||
},
|
||||
}
|
||||
if args.fp8_linear:
|
||||
config["quantization"] = {
|
||||
"quant_algo": "FP8",
|
||||
# TODO: add support for exclude modules.
|
||||
# "exclude_modules": "*final_layer*",
|
||||
}
|
||||
|
||||
with open(os.path.join(args.output_dir, "config.json"), "w") as f:
|
||||
json.dump(config, f, indent=4)
|
||||
|
||||
|
||||
def covert_and_save(args, rank):
|
||||
if rank == 0:
|
||||
save_config(args)
|
||||
|
||||
mapping = Mapping(
|
||||
world_size=args.cp_size * args.tp_size * args.pp_size,
|
||||
rank=rank,
|
||||
cp_size=args.cp_size,
|
||||
tp_size=args.tp_size,
|
||||
pp_size=args.pp_size,
|
||||
)
|
||||
|
||||
weights = convert_pytorch_dit_to_trtllm_weight(args, mapping, dtype=args.dtype)
|
||||
|
||||
safetensors.torch.save_file(weights, os.path.join(args.output_dir, f"rank{rank}.safetensors"))
|
||||
|
||||
|
||||
def execute(workers, func, args):
|
||||
if workers == 1:
|
||||
for rank, f in enumerate(func):
|
||||
f(args, rank)
|
||||
else:
|
||||
with ThreadPoolExecutor(max_workers=workers) as p:
|
||||
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
|
||||
exceptions = []
|
||||
for future in as_completed(futures):
|
||||
try:
|
||||
future.result()
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
exceptions.append(e)
|
||||
assert len(exceptions) == 0, "Checkpoint conversion failed, please check error log."
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_arguments()
|
||||
world_size = args.cp_size * args.tp_size * args.pp_size
|
||||
|
||||
assert args.pp_size == 1, "PP is not supported yet."
|
||||
|
||||
tik = time.time()
|
||||
if args.pytorch_ckpt is None:
|
||||
return
|
||||
print("Start execute")
|
||||
execute(args.workers, [covert_and_save] * world_size, args)
|
||||
|
||||
tok = time.time()
|
||||
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik))
|
||||
print(f"Total time of converting checkpoints: {t}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,138 @@
|
||||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from conv_stft import STFT
|
||||
from huggingface_hub import hf_hub_download
|
||||
from vocos import Vocos
|
||||
|
||||
|
||||
opset_version = 17
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument(
|
||||
"--vocoder",
|
||||
type=str,
|
||||
default="vocos",
|
||||
choices=["vocos", "bigvgan"],
|
||||
help="Vocoder to export",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-path",
|
||||
type=str,
|
||||
default="./vocos_vocoder.onnx",
|
||||
help="Output path",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
class ISTFTHead(nn.Module):
|
||||
def __init__(self, n_fft: int, hop_length: int):
|
||||
super().__init__()
|
||||
self.out = None
|
||||
self.stft = STFT(fft_len=n_fft, win_hop=hop_length, win_len=n_fft)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.out(x).transpose(1, 2)
|
||||
mag, p = x.chunk(2, dim=1)
|
||||
mag = torch.exp(mag)
|
||||
mag = torch.clip(mag, max=1e2)
|
||||
real = mag * torch.cos(p)
|
||||
imag = mag * torch.sin(p)
|
||||
audio = self.stft.inverse(input1=real, input2=imag, input_type="realimag")
|
||||
return audio
|
||||
|
||||
|
||||
class VocosVocoder(nn.Module):
|
||||
def __init__(self, vocos_vocoder):
|
||||
super(VocosVocoder, self).__init__()
|
||||
self.vocos_vocoder = vocos_vocoder
|
||||
istft_head_out = self.vocos_vocoder.head.out
|
||||
n_fft = self.vocos_vocoder.head.istft.n_fft
|
||||
hop_length = self.vocos_vocoder.head.istft.hop_length
|
||||
istft_head_for_export = ISTFTHead(n_fft, hop_length)
|
||||
istft_head_for_export.out = istft_head_out
|
||||
self.vocos_vocoder.head = istft_head_for_export
|
||||
|
||||
def forward(self, mel):
|
||||
waveform = self.vocos_vocoder.decode(mel)
|
||||
return waveform
|
||||
|
||||
|
||||
def export_VocosVocoder(vocos_vocoder, output_path, verbose):
|
||||
vocos_vocoder = VocosVocoder(vocos_vocoder).cuda()
|
||||
vocos_vocoder.eval()
|
||||
|
||||
dummy_batch_size = 8
|
||||
dummy_input_length = 500
|
||||
|
||||
dummy_mel = torch.randn(dummy_batch_size, 100, dummy_input_length).cuda()
|
||||
|
||||
with torch.no_grad():
|
||||
dummy_waveform = vocos_vocoder(mel=dummy_mel)
|
||||
print(dummy_waveform.shape)
|
||||
|
||||
dummy_input = dummy_mel
|
||||
|
||||
torch.onnx.export(
|
||||
vocos_vocoder,
|
||||
dummy_input,
|
||||
output_path,
|
||||
opset_version=opset_version,
|
||||
do_constant_folding=True,
|
||||
input_names=["mel"],
|
||||
output_names=["waveform"],
|
||||
dynamic_axes={
|
||||
"mel": {0: "batch_size", 2: "input_length"},
|
||||
"waveform": {0: "batch_size", 1: "output_length"},
|
||||
},
|
||||
verbose=verbose,
|
||||
)
|
||||
|
||||
print("Exported to {}".format(output_path))
|
||||
|
||||
|
||||
def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device="cpu", hf_cache_dir=None):
|
||||
if vocoder_name == "vocos":
|
||||
# vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
|
||||
if is_local:
|
||||
print(f"Load vocos from local path {local_path}")
|
||||
config_path = f"{local_path}/config.yaml"
|
||||
model_path = f"{local_path}/pytorch_model.bin"
|
||||
else:
|
||||
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
||||
repo_id = "charactr/vocos-mel-24khz"
|
||||
config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
|
||||
model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
|
||||
vocoder = Vocos.from_hparams(config_path)
|
||||
state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
|
||||
vocoder.load_state_dict(state_dict)
|
||||
vocoder = vocoder.eval().to(device)
|
||||
elif vocoder_name == "bigvgan":
|
||||
raise NotImplementedError("BigVGAN is not supported yet")
|
||||
vocoder.remove_weight_norm()
|
||||
vocoder = vocoder.eval().to(device)
|
||||
return vocoder
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
vocoder = load_vocoder(vocoder_name=args.vocoder, device="cpu", hf_cache_dir=None)
|
||||
if args.vocoder == "vocos":
|
||||
export_VocosVocoder(vocoder, args.output_path, verbose=False)
|
||||
44
src/f5_tts/runtime/triton_trtllm/scripts/export_vocos_trt.sh
Normal file
44
src/f5_tts/runtime/triton_trtllm/scripts/export_vocos_trt.sh
Normal file
@@ -0,0 +1,44 @@
|
||||
#!/bin/bash
|
||||
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Manual installation of TensorRT, in case not using NVIDIA NGC:
|
||||
# https://docs.nvidia.com/deeplearning/tensorrt/latest/installing-tensorrt/installing.html#downloading-tensorrt
|
||||
TRTEXEC="/usr/src/tensorrt/bin/trtexec"
|
||||
|
||||
ONNX_PATH=$1
|
||||
ENGINE_PATH=$2
|
||||
echo "ONNX_PATH: $ONNX_PATH"
|
||||
echo "ENGINE_PATH: $ENGINE_PATH"
|
||||
PRECISION="fp32"
|
||||
|
||||
|
||||
MIN_BATCH_SIZE=1
|
||||
OPT_BATCH_SIZE=1
|
||||
MAX_BATCH_SIZE=8
|
||||
|
||||
MIN_INPUT_LENGTH=1
|
||||
OPT_INPUT_LENGTH=1000
|
||||
MAX_INPUT_LENGTH=3000 # 4096
|
||||
|
||||
MEL_MIN_SHAPE="${MIN_BATCH_SIZE}x100x${MIN_INPUT_LENGTH}"
|
||||
MEL_OPT_SHAPE="${OPT_BATCH_SIZE}x100x${OPT_INPUT_LENGTH}"
|
||||
MEL_MAX_SHAPE="${MAX_BATCH_SIZE}x100x${MAX_INPUT_LENGTH}"
|
||||
|
||||
${TRTEXEC} \
|
||||
--minShapes="mel:${MEL_MIN_SHAPE}" \
|
||||
--optShapes="mel:${MEL_OPT_SHAPE}" \
|
||||
--maxShapes="mel:${MEL_MAX_SHAPE}" \
|
||||
--onnx=${ONNX_PATH} \
|
||||
--saveEngine=${ENGINE_PATH}
|
||||
36
src/f5_tts/runtime/triton_trtllm/scripts/fill_template.py
Normal file
36
src/f5_tts/runtime/triton_trtllm/scripts/fill_template.py
Normal file
@@ -0,0 +1,36 @@
|
||||
#! /usr/bin/env python3
|
||||
from argparse import ArgumentParser
|
||||
from string import Template
|
||||
|
||||
|
||||
def main(file_path, substitutions, in_place, participant_ids):
|
||||
with open(file_path) as f:
|
||||
pbtxt = Template(f.read())
|
||||
|
||||
sub_dict = {"max_queue_size": 0}
|
||||
sub_dict["participant_ids"] = participant_ids
|
||||
for sub in substitutions.split(","):
|
||||
key, value = sub.split(":")
|
||||
sub_dict[key] = value
|
||||
|
||||
pbtxt = pbtxt.safe_substitute(sub_dict)
|
||||
|
||||
if in_place:
|
||||
with open(file_path, "w") as f:
|
||||
f.write(pbtxt)
|
||||
else:
|
||||
print(pbtxt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("file_path", help="path of the .pbtxt to modify")
|
||||
parser.add_argument(
|
||||
"substitutions",
|
||||
help="substitutions to perform, in the format variable_name_1:value_1,variable_name_2:value_2...",
|
||||
)
|
||||
parser.add_argument("--in_place", "-i", action="store_true", help="do the operation in-place")
|
||||
parser.add_argument("--participant_ids", help="Participant IDs for the model", default="")
|
||||
args = parser.parse_args()
|
||||
|
||||
main(**vars(args))
|
||||
@@ -9,7 +9,7 @@ mel_hop_length = 256
|
||||
mel_sampling_rate = 24000
|
||||
|
||||
# target
|
||||
wanted_max_updates = 1000000
|
||||
wanted_max_updates = 1200000
|
||||
|
||||
# train params
|
||||
gpus = 8
|
||||
@@ -24,7 +24,7 @@ updates_per_epoch = total_hours / mini_batch_hours
|
||||
|
||||
# result
|
||||
epochs = wanted_max_updates / updates_per_epoch
|
||||
print(f"epochs should be set to: {epochs:.0f} ({epochs/grad_accum:.1f} x gd_acum {grad_accum})")
|
||||
print(f"epochs should be set to: {epochs:.0f} ({epochs / grad_accum:.1f} x gd_acum {grad_accum})")
|
||||
print(f"progress_bar should show approx. 0/{updates_per_epoch:.0f} updates")
|
||||
# print(f" or approx. 0/{steps_per_epoch:.0f} steps")
|
||||
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
import sys
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
from f5_tts.model import CFM, DiT
|
||||
|
||||
import torch
|
||||
import thop
|
||||
import torch
|
||||
|
||||
from f5_tts.model import CFM, DiT
|
||||
|
||||
|
||||
""" ~155M """
|
||||
|
||||
63
src/f5_tts/socket_client.py
Normal file
63
src/f5_tts/socket_client.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import socket
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import pyaudio
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def listen_to_F5TTS(text, server_ip="localhost", server_port=9998):
|
||||
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
await asyncio.get_event_loop().run_in_executor(None, client_socket.connect, (server_ip, int(server_port)))
|
||||
|
||||
start_time = time.time()
|
||||
first_chunk_time = None
|
||||
|
||||
async def play_audio_stream():
|
||||
nonlocal first_chunk_time
|
||||
p = pyaudio.PyAudio()
|
||||
stream = p.open(format=pyaudio.paFloat32, channels=1, rate=24000, output=True, frames_per_buffer=2048)
|
||||
|
||||
try:
|
||||
while True:
|
||||
data = await asyncio.get_event_loop().run_in_executor(None, client_socket.recv, 8192)
|
||||
if not data:
|
||||
break
|
||||
if data == b"END":
|
||||
logger.info("End of audio received.")
|
||||
break
|
||||
|
||||
audio_array = np.frombuffer(data, dtype=np.float32)
|
||||
stream.write(audio_array.tobytes())
|
||||
|
||||
if first_chunk_time is None:
|
||||
first_chunk_time = time.time()
|
||||
|
||||
finally:
|
||||
stream.stop_stream()
|
||||
stream.close()
|
||||
p.terminate()
|
||||
|
||||
logger.info(f"Total time taken: {time.time() - start_time:.4f} seconds")
|
||||
|
||||
try:
|
||||
data_to_send = f"{text}".encode("utf-8")
|
||||
await asyncio.get_event_loop().run_in_executor(None, client_socket.sendall, data_to_send)
|
||||
await play_audio_stream()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in listen_to_F5TTS: {e}")
|
||||
|
||||
finally:
|
||||
client_socket.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
text_to_send = "As a Reader assistant, I'm familiar with new technology. which are key to its improved performance in terms of both training speed and inference efficiency. Let's break down the components"
|
||||
|
||||
asyncio.run(listen_to_F5TTS(text_to_send))
|
||||
@@ -1,7 +1,6 @@
|
||||
import argparse
|
||||
import gc
|
||||
import logging
|
||||
import numpy as np
|
||||
import queue
|
||||
import socket
|
||||
import struct
|
||||
@@ -10,19 +9,22 @@ import traceback
|
||||
import wave
|
||||
from importlib.resources import files
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchaudio
|
||||
from huggingface_hub import hf_hub_download
|
||||
from hydra.utils import get_class
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from f5_tts.model.backbones.dit import DiT
|
||||
from f5_tts.infer.utils_infer import (
|
||||
chunk_text,
|
||||
preprocess_ref_audio_text,
|
||||
load_vocoder,
|
||||
load_model,
|
||||
infer_batch_process,
|
||||
load_model,
|
||||
load_vocoder,
|
||||
preprocess_ref_audio_text,
|
||||
)
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -68,7 +70,7 @@ class AudioFileWriterThread(threading.Thread):
|
||||
|
||||
|
||||
class TTSStreamingProcessor:
|
||||
def __init__(self, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
|
||||
def __init__(self, model, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
|
||||
self.device = device or (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
@@ -78,21 +80,24 @@ class TTSStreamingProcessor:
|
||||
if torch.backends.mps.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
self.mel_spec_type = "vocos"
|
||||
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
|
||||
self.model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
|
||||
self.model_arc = model_cfg.model.arch
|
||||
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
|
||||
self.sampling_rate = model_cfg.model.mel_spec.target_sample_rate
|
||||
|
||||
self.model = self.load_ema_model(ckpt_file, vocab_file, dtype)
|
||||
self.vocoder = self.load_vocoder_model()
|
||||
self.sampling_rate = 24000
|
||||
|
||||
self.update_reference(ref_audio, ref_text)
|
||||
self._warm_up()
|
||||
self.file_writer_thread = None
|
||||
self.first_package = True
|
||||
|
||||
def load_ema_model(self, ckpt_file, vocab_file, dtype):
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
model_cls = DiT
|
||||
return load_model(
|
||||
model_cls=model_cls,
|
||||
model_cfg=model_cfg,
|
||||
self.model_cls,
|
||||
self.model_arc,
|
||||
ckpt_path=ckpt_file,
|
||||
mel_spec_type=self.mel_spec_type,
|
||||
vocab_file=vocab_file,
|
||||
@@ -212,9 +217,14 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--host", default="0.0.0.0")
|
||||
parser.add_argument("--port", default=9998)
|
||||
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
default="F5TTS_v1_Base",
|
||||
help="The model name, e.g. F5TTS_v1_Base",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ckpt_file",
|
||||
default=str(hf_hub_download(repo_id="SWivid/F5-TTS", filename="F5TTS_Base/model_1200000.safetensors")),
|
||||
default=str(hf_hub_download(repo_id="SWivid/F5-TTS", filename="F5TTS_v1_Base/model_1250000.safetensors")),
|
||||
help="Path to the model checkpoint file",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -242,6 +252,7 @@ if __name__ == "__main__":
|
||||
try:
|
||||
# Initialize the processor with the model and vocoder
|
||||
processor = TTSStreamingProcessor(
|
||||
model=args.model,
|
||||
ckpt_file=args.ckpt_file,
|
||||
vocab_file=args.vocab_file,
|
||||
ref_audio=args.ref_audio,
|
||||
|
||||
@@ -1,5 +1,11 @@
|
||||
# Training
|
||||
|
||||
Check your FFmpeg installation:
|
||||
```bash
|
||||
ffmpeg -version
|
||||
```
|
||||
If not found, install it first (or skip assuming you know of other backends available).
|
||||
|
||||
## Prepare Dataset
|
||||
|
||||
Example data processing scripts, and you may tailor your own one along with a Dataset class in `src/f5_tts/model/dataset.py`.
|
||||
@@ -40,10 +46,10 @@ Once your datasets are prepared, you can start the training process.
|
||||
accelerate config
|
||||
|
||||
# .yaml files are under src/f5_tts/configs directory
|
||||
accelerate launch src/f5_tts/train/train.py --config-name F5TTS_Base_train.yaml
|
||||
accelerate launch src/f5_tts/train/train.py --config-name F5TTS_v1_Base.yaml
|
||||
|
||||
# possible to overwrite accelerate and hydra config
|
||||
accelerate launch --mixed_precision=fp16 src/f5_tts/train/train.py --config-name F5TTS_Small_train.yaml ++datasets.batch_size_per_gpu=19200
|
||||
accelerate launch --mixed_precision=fp16 src/f5_tts/train/train.py --config-name F5TTS_v1_Base.yaml ++datasets.batch_size_per_gpu=19200
|
||||
```
|
||||
|
||||
### 2. Finetuning practice
|
||||
@@ -51,9 +57,13 @@ Discussion board for Finetuning [#57](https://github.com/SWivid/F5-TTS/discussio
|
||||
|
||||
Gradio UI training/finetuning with `src/f5_tts/train/finetune_gradio.py` see [#143](https://github.com/SWivid/F5-TTS/discussions/143).
|
||||
|
||||
The `use_ema = True` is harmful for early-stage finetuned checkpoints (which goes just few updates, thus ema weights still dominated by pretrained ones), try turn it off and see if provide better results.
|
||||
If want to finetune with a variant version e.g. *F5TTS_v1_Base_no_zero_init*, manually download pretrained checkpoint from model weight repository and fill in the path correspondingly on web interface.
|
||||
|
||||
### 3. Wandb Logging
|
||||
If use tensorboard as logger, install it first with `pip install tensorboard`.
|
||||
|
||||
<ins>The `use_ema = True` might be harmful for early-stage finetuned checkpoints</ins> (which goes just few updates, thus ema weights still dominated by pretrained ones), try turn it off with finetune gradio option or `load_model(..., use_ema=False)`, see if offer better results.
|
||||
|
||||
### 3. W&B Logging
|
||||
|
||||
The `wandb/` dir will be created under path you run training/finetuning scripts.
|
||||
|
||||
@@ -62,7 +72,7 @@ By default, the training script does NOT use logging (assuming you didn't manual
|
||||
To turn on wandb logging, you can either:
|
||||
|
||||
1. Manually login with `wandb login`: Learn more [here](https://docs.wandb.ai/ref/cli/wandb-login)
|
||||
2. Automatically login programmatically by setting an environment variable: Get an API KEY at https://wandb.ai/site/ and set the environment variable as follows:
|
||||
2. Automatically login programmatically by setting an environment variable: Get an API KEY at https://wandb.ai/authorize and set the environment variable as follows:
|
||||
|
||||
On Mac & Linux:
|
||||
|
||||
@@ -75,7 +85,7 @@ On Windows:
|
||||
```
|
||||
set WANDB_API_KEY=<YOUR WANDB API KEY>
|
||||
```
|
||||
Moreover, if you couldn't access Wandb and want to log metrics offline, you can the environment variable as follows:
|
||||
Moreover, if you couldn't access W&B and want to log metrics offline, you can set the environment variable as follows:
|
||||
|
||||
```
|
||||
export WANDB_MODE=offline
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
import os
|
||||
import sys
|
||||
import signal
|
||||
import subprocess # For invoking ffprobe
|
||||
import shutil
|
||||
import concurrent.futures
|
||||
import multiprocessing
|
||||
import os
|
||||
import shutil
|
||||
import signal
|
||||
import subprocess # For invoking ffprobe
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import argparse
|
||||
@@ -16,12 +17,10 @@ from importlib.resources import files
|
||||
from pathlib import Path
|
||||
|
||||
import torchaudio
|
||||
from tqdm import tqdm
|
||||
from datasets.arrow_writer import ArrowWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
from f5_tts.model.utils import (
|
||||
convert_char_to_pinyin,
|
||||
)
|
||||
from f5_tts.model.utils import convert_char_to_pinyin
|
||||
|
||||
|
||||
PRETRAINED_VOCAB_PATH = files("f5_tts").joinpath("../../data/Emilia_ZH_EN_pinyin/vocab.txt")
|
||||
@@ -122,7 +121,7 @@ def prepare_csv_wavs_dir(input_dir, num_workers=None):
|
||||
for future in tqdm(
|
||||
chunk_futures,
|
||||
total=len(chunk),
|
||||
desc=f"Processing chunk {i//CHUNK_SIZE + 1}/{(total_files + CHUNK_SIZE - 1)//CHUNK_SIZE}",
|
||||
desc=f"Processing chunk {i // CHUNK_SIZE + 1}/{(total_files + CHUNK_SIZE - 1) // CHUNK_SIZE}",
|
||||
):
|
||||
try:
|
||||
result = future.result()
|
||||
@@ -209,11 +208,11 @@ def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_fine
|
||||
out_dir.mkdir(exist_ok=True, parents=True)
|
||||
print(f"\nSaving to {out_dir} ...")
|
||||
|
||||
# Save dataset with improved batch size for better I/O performance
|
||||
raw_arrow_path = out_dir / "raw.arrow"
|
||||
with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=100) as writer:
|
||||
with ArrowWriter(path=raw_arrow_path.as_posix()) as writer:
|
||||
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
||||
writer.write(line)
|
||||
writer.finalize()
|
||||
|
||||
# Save durations to JSON
|
||||
dur_json_path = out_dir / "duration.json"
|
||||
@@ -233,7 +232,7 @@ def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_fine
|
||||
dataset_name = out_dir.stem
|
||||
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
||||
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
||||
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
||||
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
|
||||
|
||||
|
||||
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True, num_workers: int = None):
|
||||
|
||||
@@ -7,20 +7,18 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import json
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
from importlib.resources import files
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
|
||||
from datasets.arrow_writer import ArrowWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
from f5_tts.model.utils import (
|
||||
repetition_found,
|
||||
convert_char_to_pinyin,
|
||||
)
|
||||
from f5_tts.model.utils import convert_char_to_pinyin, repetition_found
|
||||
|
||||
|
||||
out_zh = {
|
||||
@@ -183,6 +181,7 @@ def main():
|
||||
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
||||
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
||||
writer.write(line)
|
||||
writer.finalize()
|
||||
|
||||
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
||||
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
||||
@@ -198,7 +197,7 @@ def main():
|
||||
|
||||
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
||||
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
||||
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
||||
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
|
||||
if "ZH" in langs:
|
||||
print(f"Bad zh transcription case: {total_bad_case_zh}")
|
||||
if "EN" in langs:
|
||||
|
||||
95
src/f5_tts/train/datasets/prepare_emilia_v2.py
Normal file
95
src/f5_tts/train/datasets/prepare_emilia_v2.py
Normal file
@@ -0,0 +1,95 @@
|
||||
# put in src/f5_tts/train/datasets/prepare_emilia_v2.py
|
||||
# prepares Emilia dataset with the new format w/ Emilia-YODAS
|
||||
|
||||
import json
|
||||
import os
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
from importlib.resources import files
|
||||
from pathlib import Path
|
||||
|
||||
from datasets.arrow_writer import ArrowWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
from f5_tts.model.utils import repetition_found
|
||||
|
||||
|
||||
# Define filters for exclusion
|
||||
out_en = set()
|
||||
en_filters = ["ا", "い", "て"]
|
||||
|
||||
|
||||
def process_audio_directory(audio_dir):
|
||||
sub_result, durations, vocab_set = [], [], set()
|
||||
bad_case_en = 0
|
||||
|
||||
for file in audio_dir.iterdir():
|
||||
if file.suffix == ".json":
|
||||
with open(file, "r") as f:
|
||||
obj = json.load(f)
|
||||
text = obj["text"]
|
||||
if any(f in text for f in en_filters) or repetition_found(text, length=4):
|
||||
bad_case_en += 1
|
||||
continue
|
||||
|
||||
duration = obj["duration"]
|
||||
audio_file = file.with_suffix(".mp3")
|
||||
if audio_file.exists():
|
||||
sub_result.append({"audio_path": str(audio_file), "text": text, "duration": duration})
|
||||
durations.append(duration)
|
||||
vocab_set.update(list(text))
|
||||
|
||||
return sub_result, durations, vocab_set, bad_case_en
|
||||
|
||||
|
||||
def main():
|
||||
assert tokenizer in ["pinyin", "char"]
|
||||
result, duration_list, text_vocab_set = [], [], set()
|
||||
total_bad_case_en = 0
|
||||
|
||||
executor = ProcessPoolExecutor(max_workers=max_workers)
|
||||
futures = []
|
||||
dataset_path = Path(dataset_dir)
|
||||
for sub_dir in dataset_path.iterdir():
|
||||
if sub_dir.is_dir():
|
||||
futures.append(executor.submit(process_audio_directory, sub_dir))
|
||||
|
||||
for future in tqdm(futures, total=len(futures)):
|
||||
sub_result, durations, vocab_set, bad_case_en = future.result()
|
||||
result.extend(sub_result)
|
||||
duration_list.extend(durations)
|
||||
text_vocab_set.update(vocab_set)
|
||||
total_bad_case_en += bad_case_en
|
||||
|
||||
executor.shutdown()
|
||||
|
||||
if not os.path.exists(f"{save_dir}"):
|
||||
os.makedirs(f"{save_dir}")
|
||||
|
||||
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
||||
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
||||
writer.write(line)
|
||||
writer.finalize()
|
||||
|
||||
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
||||
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
||||
|
||||
with open(f"{save_dir}/vocab.txt", "w") as f:
|
||||
for vocab in sorted(text_vocab_set):
|
||||
f.write(vocab + "\n")
|
||||
|
||||
print(f"For {dataset_name}, sample count: {len(result)}")
|
||||
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
||||
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
|
||||
print(f"Bad en transcription case: {total_bad_case_en}\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
max_workers = 32
|
||||
tokenizer = "char"
|
||||
dataset_dir = "/home/ubuntu/emilia-dataset/Emilia-YODAS/EN"
|
||||
dataset_name = f"Emilia_EN_{tokenizer}"
|
||||
# save_dir = os.path.expanduser(f"~/F5-TTS/data/{dataset_name}")
|
||||
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
||||
|
||||
print(f"Prepare for {dataset_name}, will save to {save_dir}\n")
|
||||
main()
|
||||
@@ -1,15 +1,17 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import json
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
from importlib.resources import files
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
|
||||
import soundfile as sf
|
||||
from datasets.arrow_writer import ArrowWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def deal_with_audio_dir(audio_dir):
|
||||
@@ -60,6 +62,7 @@ def main():
|
||||
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
||||
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
||||
writer.write(line)
|
||||
writer.finalize()
|
||||
|
||||
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
||||
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
||||
@@ -72,7 +75,7 @@ def main():
|
||||
|
||||
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
||||
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
||||
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
||||
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,14 +1,16 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import json
|
||||
from importlib.resources import files
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
|
||||
import soundfile as sf
|
||||
from datasets.arrow_writer import ArrowWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def main():
|
||||
@@ -37,6 +39,7 @@ def main():
|
||||
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
||||
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
||||
writer.write(line)
|
||||
writer.finalize()
|
||||
|
||||
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
||||
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
||||
@@ -50,7 +53,7 @@ def main():
|
||||
|
||||
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
||||
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
||||
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
||||
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -4,15 +4,16 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import json
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
from importlib.resources import files
|
||||
from tqdm import tqdm
|
||||
|
||||
import torchaudio
|
||||
from datasets import Dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from f5_tts.model.utils import convert_char_to_pinyin
|
||||
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
import argparse
|
||||
import os
|
||||
import shutil
|
||||
from importlib.resources import files
|
||||
|
||||
from cached_path import cached_path
|
||||
from f5_tts.model import CFM, UNetT, DiT, Trainer
|
||||
from f5_tts.model.utils import get_tokenizer
|
||||
|
||||
from f5_tts.model import CFM, DiT, Trainer, UNetT
|
||||
from f5_tts.model.dataset import load_dataset
|
||||
from importlib.resources import files
|
||||
from f5_tts.model.utils import get_tokenizer
|
||||
|
||||
|
||||
# -------------------------- Dataset Settings --------------------------- #
|
||||
@@ -20,19 +21,14 @@ mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
|
||||
|
||||
# -------------------------- Argument Parsing --------------------------- #
|
||||
def parse_args():
|
||||
# batch_size_per_gpu = 1000 settting for gpu 8GB
|
||||
# batch_size_per_gpu = 1600 settting for gpu 12GB
|
||||
# batch_size_per_gpu = 2000 settting for gpu 16GB
|
||||
# batch_size_per_gpu = 3200 settting for gpu 24GB
|
||||
|
||||
# num_warmup_updates = 300 for 5000 sample about 10 hours
|
||||
|
||||
# change save_per_updates , last_per_updates change this value what you need ,
|
||||
|
||||
parser = argparse.ArgumentParser(description="Train CFM Model")
|
||||
|
||||
parser.add_argument(
|
||||
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
||||
"--exp_name",
|
||||
type=str,
|
||||
default="F5TTS_v1_Base",
|
||||
choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"],
|
||||
help="Experiment name",
|
||||
)
|
||||
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
|
||||
parser.add_argument("--learning_rate", type=float, default=1e-5, help="Learning rate for training")
|
||||
@@ -44,15 +40,15 @@ def parse_args():
|
||||
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
||||
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
||||
parser.add_argument("--epochs", type=int, default=100, help="Number of training epochs")
|
||||
parser.add_argument("--num_warmup_updates", type=int, default=300, help="Warmup updates")
|
||||
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X updates")
|
||||
parser.add_argument("--num_warmup_updates", type=int, default=20000, help="Warmup updates")
|
||||
parser.add_argument("--save_per_updates", type=int, default=50000, help="Save checkpoint every N updates")
|
||||
parser.add_argument(
|
||||
"--keep_last_n_checkpoints",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="-1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints",
|
||||
)
|
||||
parser.add_argument("--last_per_updates", type=int, default=50000, help="Save last checkpoint every X updates")
|
||||
parser.add_argument("--last_per_updates", type=int, default=5000, help="Save last checkpoint every N updates")
|
||||
parser.add_argument("--finetune", action="store_true", help="Use Finetune")
|
||||
parser.add_argument("--pretrain", type=str, default=None, help="the path to the checkpoint")
|
||||
parser.add_argument(
|
||||
@@ -69,7 +65,7 @@ def parse_args():
|
||||
action="store_true",
|
||||
help="Log inferenced samples per ckpt save updates",
|
||||
)
|
||||
parser.add_argument("--logger", type=str, default=None, choices=["wandb", "tensorboard"], help="logger")
|
||||
parser.add_argument("--logger", type=str, default=None, choices=[None, "wandb", "tensorboard"], help="logger")
|
||||
parser.add_argument(
|
||||
"--bnb_optimizer",
|
||||
action="store_true",
|
||||
@@ -88,19 +84,54 @@ def main():
|
||||
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
||||
|
||||
# Model parameters based on experiment name
|
||||
if args.exp_name == "F5TTS_Base":
|
||||
|
||||
if args.exp_name == "F5TTS_v1_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = DiT
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
model_cfg = dict(
|
||||
dim=1024,
|
||||
depth=22,
|
||||
heads=16,
|
||||
ff_mult=2,
|
||||
text_dim=512,
|
||||
conv_layers=4,
|
||||
)
|
||||
if args.finetune:
|
||||
if args.pretrain is None:
|
||||
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors"))
|
||||
else:
|
||||
ckpt_path = args.pretrain
|
||||
|
||||
elif args.exp_name == "F5TTS_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = DiT
|
||||
model_cfg = dict(
|
||||
dim=1024,
|
||||
depth=22,
|
||||
heads=16,
|
||||
ff_mult=2,
|
||||
text_dim=512,
|
||||
text_mask_padding=False,
|
||||
conv_layers=4,
|
||||
pe_attn_head=1,
|
||||
)
|
||||
if args.finetune:
|
||||
if args.pretrain is None:
|
||||
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
||||
else:
|
||||
ckpt_path = args.pretrain
|
||||
|
||||
elif args.exp_name == "E2TTS_Base":
|
||||
wandb_resume_id = None
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
model_cfg = dict(
|
||||
dim=1024,
|
||||
depth=24,
|
||||
heads=16,
|
||||
ff_mult=4,
|
||||
text_mask_padding=False,
|
||||
pe_attn_head=1,
|
||||
)
|
||||
if args.finetune:
|
||||
if args.pretrain is None:
|
||||
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
||||
@@ -120,6 +151,7 @@ def main():
|
||||
print("copy checkpoint for finetune")
|
||||
|
||||
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
||||
|
||||
tokenizer = args.tokenizer
|
||||
if tokenizer == "custom":
|
||||
if not args.tokenizer_path:
|
||||
@@ -156,7 +188,7 @@ def main():
|
||||
save_per_updates=args.save_per_updates,
|
||||
keep_last_n_checkpoints=args.keep_last_n_checkpoints,
|
||||
checkpoint_path=checkpoint_path,
|
||||
batch_size=args.batch_size_per_gpu,
|
||||
batch_size_per_gpu=args.batch_size_per_gpu,
|
||||
batch_size_type=args.batch_size_type,
|
||||
max_samples=args.max_samples,
|
||||
grad_accumulation_steps=args.grad_accumulation_steps,
|
||||
|
||||
@@ -1,36 +1,36 @@
|
||||
import threading
|
||||
import queue
|
||||
import re
|
||||
|
||||
import gc
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
import psutil
|
||||
import queue
|
||||
import random
|
||||
import signal
|
||||
import re
|
||||
import shutil
|
||||
import signal
|
||||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
import threading
|
||||
import time
|
||||
from glob import glob
|
||||
from importlib.resources import files
|
||||
|
||||
import click
|
||||
import gradio as gr
|
||||
import librosa
|
||||
import numpy as np
|
||||
import psutil
|
||||
import torch
|
||||
import torchaudio
|
||||
from cached_path import cached_path
|
||||
from datasets import Dataset as Dataset_
|
||||
from datasets.arrow_writer import ArrowWriter
|
||||
from safetensors.torch import save_file
|
||||
from safetensors.torch import load_file, save_file
|
||||
from scipy.io import wavfile
|
||||
from cached_path import cached_path
|
||||
|
||||
from f5_tts.api import F5TTS
|
||||
from f5_tts.model.utils import convert_char_to_pinyin
|
||||
from f5_tts.infer.utils_infer import transcribe
|
||||
from importlib.resources import files
|
||||
from f5_tts.model.utils import convert_char_to_pinyin
|
||||
|
||||
|
||||
training_process = None
|
||||
@@ -118,26 +118,28 @@ def load_settings(project_name):
|
||||
|
||||
# Default settings
|
||||
default_settings = {
|
||||
"exp_name": "F5TTS_Base",
|
||||
"learning_rate": 1e-05,
|
||||
"batch_size_per_gpu": 1000,
|
||||
"exp_name": "F5TTS_v1_Base",
|
||||
"learning_rate": 1e-5,
|
||||
"batch_size_per_gpu": 3200,
|
||||
"batch_size_type": "frame",
|
||||
"max_samples": 64,
|
||||
"grad_accumulation_steps": 1,
|
||||
"max_grad_norm": 1,
|
||||
"max_grad_norm": 1.0,
|
||||
"epochs": 100,
|
||||
"num_warmup_updates": 2,
|
||||
"save_per_updates": 300,
|
||||
"num_warmup_updates": 100,
|
||||
"save_per_updates": 500,
|
||||
"keep_last_n_checkpoints": -1,
|
||||
"last_per_updates": 100,
|
||||
"finetune": True,
|
||||
"file_checkpoint_train": "",
|
||||
"tokenizer_type": "pinyin",
|
||||
"tokenizer_file": "",
|
||||
"mixed_precision": "none",
|
||||
"logger": "wandb",
|
||||
"mixed_precision": "fp16",
|
||||
"logger": "none",
|
||||
"bnb_optimizer": False,
|
||||
}
|
||||
if device == "mps":
|
||||
default_settings["mixed_precision"] = "none"
|
||||
|
||||
# Load settings from file if it exists
|
||||
if os.path.isfile(file_setting):
|
||||
@@ -176,50 +178,12 @@ def get_audio_duration(audio_path):
|
||||
return audio.shape[1] / sample_rate
|
||||
|
||||
|
||||
def clear_text(text):
|
||||
"""Clean and prepare text by lowering the case and stripping whitespace."""
|
||||
return text.lower().strip()
|
||||
|
||||
|
||||
def get_rms(
|
||||
y,
|
||||
frame_length=2048,
|
||||
hop_length=512,
|
||||
pad_mode="constant",
|
||||
): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
|
||||
padding = (int(frame_length // 2), int(frame_length // 2))
|
||||
y = np.pad(y, padding, mode=pad_mode)
|
||||
|
||||
axis = -1
|
||||
# put our new within-frame axis at the end for now
|
||||
out_strides = y.strides + tuple([y.strides[axis]])
|
||||
# Reduce the shape on the framing axis
|
||||
x_shape_trimmed = list(y.shape)
|
||||
x_shape_trimmed[axis] -= frame_length - 1
|
||||
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
||||
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
||||
if axis < 0:
|
||||
target_axis = axis - 1
|
||||
else:
|
||||
target_axis = axis + 1
|
||||
xw = np.moveaxis(xw, -1, target_axis)
|
||||
# Downsample along the target axis
|
||||
slices = [slice(None)] * xw.ndim
|
||||
slices[axis] = slice(0, None, hop_length)
|
||||
x = xw[tuple(slices)]
|
||||
|
||||
# Calculate power
|
||||
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
||||
|
||||
return np.sqrt(power)
|
||||
|
||||
|
||||
class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
|
||||
def __init__(
|
||||
self,
|
||||
sr: int,
|
||||
threshold: float = -40.0,
|
||||
min_length: int = 2000,
|
||||
min_length: int = 20000, # 20 seconds
|
||||
min_interval: int = 300,
|
||||
hop_size: int = 20,
|
||||
max_sil_kept: int = 2000,
|
||||
@@ -250,7 +214,7 @@ class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.
|
||||
samples = waveform
|
||||
if samples.shape[0] <= self.min_length:
|
||||
return [waveform]
|
||||
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
||||
rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
||||
sil_tags = []
|
||||
silence_start = None
|
||||
clip_start = 0
|
||||
@@ -304,8 +268,7 @@ class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.
|
||||
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
||||
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
||||
sil_tags.append((pos, total_frames + 1))
|
||||
# Apply and return slices.
|
||||
####音频+起始时间+终止时间
|
||||
# Apply and return slices: [chunk, start, end]
|
||||
if len(sil_tags) == 0:
|
||||
return [[waveform, 0, int(total_frames * self.hop_size)]]
|
||||
else:
|
||||
@@ -361,27 +324,27 @@ def terminate_process(pid):
|
||||
|
||||
|
||||
def start_training(
|
||||
dataset_name="",
|
||||
exp_name="F5TTS_Base",
|
||||
learning_rate=1e-4,
|
||||
batch_size_per_gpu=400,
|
||||
batch_size_type="frame",
|
||||
max_samples=64,
|
||||
grad_accumulation_steps=1,
|
||||
max_grad_norm=1.0,
|
||||
epochs=11,
|
||||
num_warmup_updates=200,
|
||||
save_per_updates=400,
|
||||
keep_last_n_checkpoints=-1,
|
||||
last_per_updates=800,
|
||||
finetune=True,
|
||||
file_checkpoint_train="",
|
||||
tokenizer_type="pinyin",
|
||||
tokenizer_file="",
|
||||
mixed_precision="fp16",
|
||||
stream=False,
|
||||
logger="wandb",
|
||||
ch_8bit_adam=False,
|
||||
dataset_name,
|
||||
exp_name,
|
||||
learning_rate,
|
||||
batch_size_per_gpu,
|
||||
batch_size_type,
|
||||
max_samples,
|
||||
grad_accumulation_steps,
|
||||
max_grad_norm,
|
||||
epochs,
|
||||
num_warmup_updates,
|
||||
save_per_updates,
|
||||
keep_last_n_checkpoints,
|
||||
last_per_updates,
|
||||
finetune,
|
||||
file_checkpoint_train,
|
||||
tokenizer_type,
|
||||
tokenizer_file,
|
||||
mixed_precision,
|
||||
stream,
|
||||
logger,
|
||||
ch_8bit_adam,
|
||||
):
|
||||
global training_process, tts_api, stop_signal
|
||||
|
||||
@@ -432,7 +395,7 @@ def start_training(
|
||||
fp16 = ""
|
||||
|
||||
cmd = (
|
||||
f"accelerate launch {fp16} {file_train} --exp_name {exp_name}"
|
||||
f'accelerate launch {fp16} "{file_train}" --exp_name {exp_name}'
|
||||
f" --learning_rate {learning_rate}"
|
||||
f" --batch_size_per_gpu {batch_size_per_gpu}"
|
||||
f" --batch_size_type {batch_size_type}"
|
||||
@@ -451,14 +414,17 @@ def start_training(
|
||||
cmd += " --finetune"
|
||||
|
||||
if file_checkpoint_train != "":
|
||||
cmd += f" --pretrain {file_checkpoint_train}"
|
||||
cmd += f' --pretrain "{file_checkpoint_train}"'
|
||||
|
||||
if tokenizer_file != "":
|
||||
cmd += f" --tokenizer_path {tokenizer_file}"
|
||||
|
||||
cmd += f" --tokenizer {tokenizer_type}"
|
||||
|
||||
cmd += f" --log_samples --logger {logger}"
|
||||
if logger != "none":
|
||||
cmd += f" --logger {logger}"
|
||||
|
||||
cmd += " --log_samples"
|
||||
|
||||
if ch_8bit_adam:
|
||||
cmd += " --bnb_optimizer"
|
||||
@@ -515,7 +481,7 @@ def start_training(
|
||||
training_process = subprocess.Popen(
|
||||
cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1, env=env
|
||||
)
|
||||
yield "Training started...", gr.update(interactive=False), gr.update(interactive=True)
|
||||
yield "Training started ...", gr.update(interactive=False), gr.update(interactive=True)
|
||||
|
||||
stdout_queue = queue.Queue()
|
||||
stderr_queue = queue.Queue()
|
||||
@@ -584,7 +550,11 @@ def start_training(
|
||||
gr.update(interactive=True),
|
||||
)
|
||||
else:
|
||||
yield "Training complete!", gr.update(interactive=False), gr.update(interactive=True)
|
||||
yield (
|
||||
"Training complete or paused ...",
|
||||
gr.update(interactive=False),
|
||||
gr.update(interactive=True),
|
||||
)
|
||||
break
|
||||
|
||||
# Small sleep to prevent CPU thrashing
|
||||
@@ -598,9 +568,9 @@ def start_training(
|
||||
time.sleep(1)
|
||||
|
||||
if training_process is None:
|
||||
text_info = "train stop"
|
||||
text_info = "Train stopped !"
|
||||
else:
|
||||
text_info = "train complete !"
|
||||
text_info = "Train complete at end !"
|
||||
|
||||
except Exception as e: # Catch all exceptions
|
||||
# Ensure that we reset the training process variable in case of an error
|
||||
@@ -615,11 +585,11 @@ def stop_training():
|
||||
global training_process, stop_signal
|
||||
|
||||
if training_process is None:
|
||||
return "Train not run !", gr.update(interactive=True), gr.update(interactive=False)
|
||||
return "Train not running !", gr.update(interactive=True), gr.update(interactive=False)
|
||||
terminate_process_tree(training_process.pid)
|
||||
# training_process = None
|
||||
stop_signal = True
|
||||
return "train stop", gr.update(interactive=True), gr.update(interactive=False)
|
||||
return "Train stopped !", gr.update(interactive=True), gr.update(interactive=False)
|
||||
|
||||
|
||||
def get_list_projects():
|
||||
@@ -698,7 +668,7 @@ def transcribe_all(name_project, audio_files, language, user=False, progress=gr.
|
||||
|
||||
try:
|
||||
text = transcribe(file_segment, language)
|
||||
text = text.lower().strip().replace('"', "")
|
||||
text = text.strip()
|
||||
|
||||
data += f"{name_segment}|{text}\n"
|
||||
|
||||
@@ -797,17 +767,17 @@ def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
|
||||
print(f"Error processing {file_audio}: {e}")
|
||||
continue
|
||||
|
||||
if duration < 1 or duration > 25:
|
||||
if duration > 25:
|
||||
error_files.append([file_audio, "duration > 25 sec"])
|
||||
if duration < 1 or duration > 30:
|
||||
if duration > 30:
|
||||
error_files.append([file_audio, "duration > 30 sec"])
|
||||
if duration < 1:
|
||||
error_files.append([file_audio, "duration < 1 sec "])
|
||||
continue
|
||||
if len(text) < 3:
|
||||
error_files.append([file_audio, "very small text len 3"])
|
||||
error_files.append([file_audio, "very short text length 3"])
|
||||
continue
|
||||
|
||||
text = clear_text(text)
|
||||
text = text.strip()
|
||||
text = convert_char_to_pinyin([text], polyphone=True)[0]
|
||||
|
||||
audio_path_list.append(file_audio)
|
||||
@@ -826,9 +796,10 @@ def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
|
||||
min_second = round(min(duration_list), 2)
|
||||
max_second = round(max(duration_list), 2)
|
||||
|
||||
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
|
||||
with ArrowWriter(path=file_raw) as writer:
|
||||
for line in progress.tqdm(result, total=len(result), desc="prepare data"):
|
||||
writer.write(line)
|
||||
writer.finalize()
|
||||
|
||||
with open(file_duration, "w") as f:
|
||||
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
||||
@@ -871,40 +842,37 @@ def check_user(value):
|
||||
|
||||
def calculate_train(
|
||||
name_project,
|
||||
epochs,
|
||||
learning_rate,
|
||||
batch_size_per_gpu,
|
||||
batch_size_type,
|
||||
max_samples,
|
||||
learning_rate,
|
||||
num_warmup_updates,
|
||||
save_per_updates,
|
||||
last_per_updates,
|
||||
finetune,
|
||||
):
|
||||
path_project = os.path.join(path_data, name_project)
|
||||
file_duraction = os.path.join(path_project, "duration.json")
|
||||
file_duration = os.path.join(path_project, "duration.json")
|
||||
|
||||
if not os.path.isfile(file_duraction):
|
||||
hop_length = 256
|
||||
sampling_rate = 24000
|
||||
|
||||
if not os.path.isfile(file_duration):
|
||||
return (
|
||||
1000,
|
||||
epochs,
|
||||
learning_rate,
|
||||
batch_size_per_gpu,
|
||||
max_samples,
|
||||
num_warmup_updates,
|
||||
save_per_updates,
|
||||
last_per_updates,
|
||||
"project not found !",
|
||||
learning_rate,
|
||||
)
|
||||
|
||||
with open(file_duraction, "r") as file:
|
||||
with open(file_duration, "r") as file:
|
||||
data = json.load(file)
|
||||
|
||||
duration_list = data["duration"]
|
||||
samples = len(duration_list)
|
||||
hours = sum(duration_list) / 3600
|
||||
|
||||
# if torch.cuda.is_available():
|
||||
# gpu_properties = torch.cuda.get_device_properties(0)
|
||||
# total_memory = gpu_properties.total_memory / (1024**3)
|
||||
# elif torch.backends.mps.is_available():
|
||||
# total_memory = psutil.virtual_memory().available / (1024**3)
|
||||
max_sample_length = max(duration_list) * sampling_rate / hop_length
|
||||
total_samples = len(duration_list)
|
||||
total_duration = sum(duration_list)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
gpu_count = torch.cuda.device_count()
|
||||
@@ -912,64 +880,39 @@ def calculate_train(
|
||||
for i in range(gpu_count):
|
||||
gpu_properties = torch.cuda.get_device_properties(i)
|
||||
total_memory += gpu_properties.total_memory / (1024**3) # in GB
|
||||
|
||||
elif torch.xpu.is_available():
|
||||
gpu_count = torch.xpu.device_count()
|
||||
total_memory = 0
|
||||
for i in range(gpu_count):
|
||||
gpu_properties = torch.xpu.get_device_properties(i)
|
||||
total_memory += gpu_properties.total_memory / (1024**3)
|
||||
|
||||
elif torch.backends.mps.is_available():
|
||||
gpu_count = 1
|
||||
total_memory = psutil.virtual_memory().available / (1024**3)
|
||||
|
||||
avg_gpu_memory = total_memory / gpu_count
|
||||
|
||||
# rough estimate of batch size
|
||||
if batch_size_type == "frame":
|
||||
batch = int(total_memory * 0.5)
|
||||
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
|
||||
batch_size_per_gpu = int(38400 / batch)
|
||||
else:
|
||||
batch_size_per_gpu = int(total_memory / 8)
|
||||
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
|
||||
batch = batch_size_per_gpu
|
||||
batch_size_per_gpu = max(int(38400 * (avg_gpu_memory - 5) / 75), int(max_sample_length))
|
||||
elif batch_size_type == "sample":
|
||||
batch_size_per_gpu = int(200 / (total_duration / total_samples))
|
||||
|
||||
if batch_size_per_gpu <= 0:
|
||||
batch_size_per_gpu = 1
|
||||
if total_samples < 64:
|
||||
max_samples = int(total_samples * 0.25)
|
||||
|
||||
if samples < 64:
|
||||
max_samples = int(samples * 0.25)
|
||||
else:
|
||||
max_samples = 64
|
||||
num_warmup_updates = max(num_warmup_updates, int(total_samples * 0.05))
|
||||
|
||||
num_warmup_updates = int(samples * 0.05)
|
||||
save_per_updates = int(samples * 0.10)
|
||||
last_per_updates = int(save_per_updates * 0.25)
|
||||
# take 1.2M updates as the maximum
|
||||
max_updates = 1200000
|
||||
|
||||
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
|
||||
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
|
||||
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
|
||||
last_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_updates)
|
||||
if last_per_updates <= 0:
|
||||
last_per_updates = 2
|
||||
if batch_size_type == "frame":
|
||||
mini_batch_duration = batch_size_per_gpu * gpu_count * hop_length / sampling_rate
|
||||
updates_per_epoch = total_duration / mini_batch_duration
|
||||
elif batch_size_type == "sample":
|
||||
updates_per_epoch = total_samples / batch_size_per_gpu / gpu_count
|
||||
|
||||
total_hours = hours
|
||||
mel_hop_length = 256
|
||||
mel_sampling_rate = 24000
|
||||
|
||||
# target
|
||||
wanted_max_updates = 1000000
|
||||
|
||||
# train params
|
||||
gpus = gpu_count
|
||||
frames_per_gpu = batch_size_per_gpu # 8 * 38400 = 307200
|
||||
grad_accum = 1
|
||||
|
||||
# intermediate
|
||||
mini_batch_frames = frames_per_gpu * grad_accum * gpus
|
||||
mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600
|
||||
updates_per_epoch = total_hours / mini_batch_hours
|
||||
# steps_per_epoch = updates_per_epoch * grad_accum
|
||||
epochs = wanted_max_updates / updates_per_epoch
|
||||
epochs = int(max_updates / updates_per_epoch)
|
||||
|
||||
if finetune:
|
||||
learning_rate = 1e-5
|
||||
@@ -977,32 +920,32 @@ def calculate_train(
|
||||
learning_rate = 7.5e-5
|
||||
|
||||
return (
|
||||
epochs,
|
||||
learning_rate,
|
||||
batch_size_per_gpu,
|
||||
max_samples,
|
||||
num_warmup_updates,
|
||||
save_per_updates,
|
||||
last_per_updates,
|
||||
samples,
|
||||
learning_rate,
|
||||
int(epochs),
|
||||
total_samples,
|
||||
)
|
||||
|
||||
|
||||
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str, safetensors: bool) -> str:
|
||||
def prune_checkpoint(checkpoint_path: str, new_checkpoint_path: str, save_ema: bool, safetensors: bool) -> str:
|
||||
try:
|
||||
checkpoint = torch.load(checkpoint_path, weights_only=True)
|
||||
print("Original Checkpoint Keys:", checkpoint.keys())
|
||||
|
||||
ema_model_state_dict = checkpoint.get("ema_model_state_dict", None)
|
||||
if ema_model_state_dict is None:
|
||||
return "No 'ema_model_state_dict' found in the checkpoint."
|
||||
to_retain = "ema_model_state_dict" if save_ema else "model_state_dict"
|
||||
try:
|
||||
model_state_dict_to_retain = checkpoint[to_retain]
|
||||
except KeyError:
|
||||
return f"{to_retain} not found in the checkpoint."
|
||||
|
||||
if safetensors:
|
||||
new_checkpoint_path = new_checkpoint_path.replace(".pt", ".safetensors")
|
||||
save_file(ema_model_state_dict, new_checkpoint_path)
|
||||
save_file(model_state_dict_to_retain, new_checkpoint_path)
|
||||
else:
|
||||
new_checkpoint_path = new_checkpoint_path.replace(".safetensors", ".pt")
|
||||
new_checkpoint = {"ema_model_state_dict": ema_model_state_dict}
|
||||
new_checkpoint = {"ema_model_state_dict": model_state_dict_to_retain}
|
||||
torch.save(new_checkpoint, new_checkpoint_path)
|
||||
|
||||
return f"New checkpoint saved at: {new_checkpoint_path}"
|
||||
@@ -1021,7 +964,11 @@ def expand_model_embeddings(ckpt_path, new_ckpt_path, num_new_tokens=42):
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
ckpt = torch.load(ckpt_path, map_location="cpu")
|
||||
if ckpt_path.endswith(".safetensors"):
|
||||
ckpt = load_file(ckpt_path, device="cpu")
|
||||
ckpt = {"ema_model_state_dict": ckpt}
|
||||
elif ckpt_path.endswith(".pt"):
|
||||
ckpt = torch.load(ckpt_path, map_location="cpu")
|
||||
|
||||
ema_sd = ckpt.get("ema_model_state_dict", {})
|
||||
embed_key_ema = "ema_model.transformer.text_embed.text_embed.weight"
|
||||
@@ -1039,7 +986,10 @@ def expand_model_embeddings(ckpt_path, new_ckpt_path, num_new_tokens=42):
|
||||
|
||||
ema_sd[embed_key_ema] = expand_embeddings(ema_sd[embed_key_ema])
|
||||
|
||||
torch.save(ckpt, new_ckpt_path)
|
||||
if new_ckpt_path.endswith(".safetensors"):
|
||||
save_file(ema_sd, new_ckpt_path)
|
||||
elif new_ckpt_path.endswith(".pt"):
|
||||
torch.save(ckpt, new_ckpt_path)
|
||||
|
||||
return vocab_new
|
||||
|
||||
@@ -1089,9 +1039,11 @@ def vocab_extend(project_name, symbols, model_type):
|
||||
with open(file_vocab_project, "w", encoding="utf-8") as f:
|
||||
f.write("\n".join(vocab))
|
||||
|
||||
if model_type == "F5-TTS":
|
||||
if model_type == "F5TTS_v1_Base":
|
||||
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors"))
|
||||
elif model_type == "F5TTS_Base":
|
||||
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
||||
else:
|
||||
elif model_type == "E2TTS_Base":
|
||||
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
||||
|
||||
vocab_size_new = len(miss_symbols)
|
||||
@@ -1101,7 +1053,7 @@ def vocab_extend(project_name, symbols, model_type):
|
||||
os.makedirs(new_ckpt_path, exist_ok=True)
|
||||
|
||||
# Add pretrained_ prefix to model when copying for consistency with finetune_cli.py
|
||||
new_ckpt_file = os.path.join(new_ckpt_path, "pretrained_model_1200000.pt")
|
||||
new_ckpt_file = os.path.join(new_ckpt_path, "pretrained_" + os.path.basename(ckpt_path))
|
||||
|
||||
size = expand_model_embeddings(ckpt_path, new_ckpt_file, num_new_tokens=vocab_size_new)
|
||||
|
||||
@@ -1109,7 +1061,7 @@ def vocab_extend(project_name, symbols, model_type):
|
||||
return f"vocab old size : {size_vocab}\nvocab new size : {size}\nvocab add : {vocab_size_new}\nnew symbols :\n{vocab_new}"
|
||||
|
||||
|
||||
def vocab_check(project_name):
|
||||
def vocab_check(project_name, tokenizer_type):
|
||||
name_project = project_name
|
||||
path_project = os.path.join(path_data, name_project)
|
||||
|
||||
@@ -1137,7 +1089,9 @@ def vocab_check(project_name):
|
||||
if len(sp) != 2:
|
||||
continue
|
||||
|
||||
text = sp[1].lower().strip()
|
||||
text = sp[1].strip()
|
||||
if tokenizer_type == "pinyin":
|
||||
text = convert_char_to_pinyin([text], polyphone=True)[0]
|
||||
|
||||
for t in text:
|
||||
if t not in vocab and t not in miss_symbols_keep:
|
||||
@@ -1149,7 +1103,7 @@ def vocab_check(project_name):
|
||||
info = "You can train using your language !"
|
||||
else:
|
||||
vocab_miss = ",".join(miss_symbols)
|
||||
info = f"The following symbols are missing in your language {len(miss_symbols)}\n\n"
|
||||
info = f"The following {len(miss_symbols)} symbols are missing in your language\n\n"
|
||||
|
||||
return info, vocab_miss
|
||||
|
||||
@@ -1231,21 +1185,24 @@ def infer(
|
||||
vocab_file = os.path.join(path_data, project, "vocab.txt")
|
||||
|
||||
tts_api = F5TTS(
|
||||
model_type=exp_name, ckpt_file=file_checkpoint, vocab_file=vocab_file, device=device_test, use_ema=use_ema
|
||||
model=exp_name, ckpt_file=file_checkpoint, vocab_file=vocab_file, device=device_test, use_ema=use_ema
|
||||
)
|
||||
|
||||
print("update >> ", device_test, file_checkpoint, use_ema)
|
||||
|
||||
if seed == -1: # -1 used for random
|
||||
seed = None
|
||||
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
||||
tts_api.infer(
|
||||
gen_text=gen_text.lower().strip(),
|
||||
ref_text=ref_text.lower().strip(),
|
||||
ref_file=ref_audio,
|
||||
ref_text=ref_text.strip(),
|
||||
gen_text=gen_text.strip(),
|
||||
nfe_step=nfe_step,
|
||||
file_wave=f.name,
|
||||
speed=speed,
|
||||
seed=seed,
|
||||
remove_silence=remove_silence,
|
||||
file_wave=f.name,
|
||||
seed=seed,
|
||||
)
|
||||
return f.name, tts_api.device, str(tts_api.seed)
|
||||
|
||||
@@ -1404,14 +1361,14 @@ def get_audio_select(file_sample):
|
||||
with gr.Blocks() as app:
|
||||
gr.Markdown(
|
||||
"""
|
||||
# E2/F5 TTS Automatic Finetune
|
||||
# F5 TTS Automatic Finetune
|
||||
|
||||
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
|
||||
This is a local web UI for F5 TTS finetuning support. This app supports the following TTS models:
|
||||
|
||||
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
|
||||
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
|
||||
|
||||
The checkpoints support English and Chinese.
|
||||
The pretrained checkpoints support English and Chinese.
|
||||
|
||||
For tutorial and updates check here (https://github.com/SWivid/F5-TTS/discussions/143)
|
||||
"""
|
||||
@@ -1454,9 +1411,9 @@ Skip this step if you have your dataset, metadata.csv, and a folder wavs with al
|
||||
)
|
||||
|
||||
audio_speaker = gr.File(label="Voice", type="filepath", file_count="multiple")
|
||||
txt_lang = gr.Text(label="Language", value="English")
|
||||
txt_lang = gr.Textbox(label="Language", value="English")
|
||||
bt_transcribe = bt_create = gr.Button("Transcribe")
|
||||
txt_info_transcribe = gr.Text(label="Info", value="")
|
||||
txt_info_transcribe = gr.Textbox(label="Info", value="")
|
||||
bt_transcribe.click(
|
||||
fn=transcribe_all,
|
||||
inputs=[cm_project, audio_speaker, txt_lang, ch_manual],
|
||||
@@ -1467,7 +1424,7 @@ Skip this step if you have your dataset, metadata.csv, and a folder wavs with al
|
||||
random_sample_transcribe = gr.Button("Random Sample")
|
||||
|
||||
with gr.Row():
|
||||
random_text_transcribe = gr.Text(label="Text")
|
||||
random_text_transcribe = gr.Textbox(label="Text")
|
||||
random_audio_transcribe = gr.Audio(label="Audio", type="filepath")
|
||||
|
||||
random_sample_transcribe.click(
|
||||
@@ -1482,13 +1439,15 @@ Check the vocabulary for fine-tuning Emilia_ZH_EN to ensure all symbols are incl
|
||||
```""")
|
||||
|
||||
check_button = gr.Button("Check Vocab")
|
||||
txt_info_check = gr.Text(label="Info", value="")
|
||||
txt_info_check = gr.Textbox(label="Info", value="")
|
||||
|
||||
gr.Markdown("""```plaintext
|
||||
Using the extended model, you can finetune to a new language that is missing symbols in the vocab. This creates a new model with a new vocabulary size and saves it in your ckpts/project folder.
|
||||
```""")
|
||||
|
||||
exp_name_extend = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
||||
exp_name_extend = gr.Radio(
|
||||
label="Model", choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"], value="F5TTS_v1_Base"
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
txt_extend = gr.Textbox(
|
||||
@@ -1500,10 +1459,12 @@ Using the extended model, you can finetune to a new language that is missing sym
|
||||
txt_count_symbol = gr.Textbox(label="New Vocab Size", value="", scale=1)
|
||||
|
||||
extend_button = gr.Button("Extend")
|
||||
txt_info_extend = gr.Text(label="Info", value="")
|
||||
txt_info_extend = gr.Textbox(label="Info", value="")
|
||||
|
||||
txt_extend.change(vocab_count, inputs=[txt_extend], outputs=[txt_count_symbol])
|
||||
check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check, txt_extend])
|
||||
check_button.click(
|
||||
fn=vocab_check, inputs=[cm_project, tokenizer_type], outputs=[txt_info_check, txt_extend]
|
||||
)
|
||||
extend_button.click(
|
||||
fn=vocab_extend, inputs=[cm_project, txt_extend, exp_name_extend], outputs=[txt_info_extend]
|
||||
)
|
||||
@@ -1540,8 +1501,8 @@ Skip this step if you have your dataset, raw.arrow, duration.json, and vocab.txt
|
||||
ch_tokenizern = gr.Checkbox(label="Create Vocabulary", value=False, visible=False)
|
||||
|
||||
bt_prepare = bt_create = gr.Button("Prepare")
|
||||
txt_info_prepare = gr.Text(label="Info", value="")
|
||||
txt_vocab_prepare = gr.Text(label="Vocab", value="")
|
||||
txt_info_prepare = gr.Textbox(label="Info", value="")
|
||||
txt_vocab_prepare = gr.Textbox(label="Vocab", value="")
|
||||
|
||||
bt_prepare.click(
|
||||
fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare]
|
||||
@@ -1550,61 +1511,73 @@ Skip this step if you have your dataset, raw.arrow, duration.json, and vocab.txt
|
||||
random_sample_prepare = gr.Button("Random Sample")
|
||||
|
||||
with gr.Row():
|
||||
random_text_prepare = gr.Text(label="Tokenizer")
|
||||
random_text_prepare = gr.Textbox(label="Tokenizer")
|
||||
random_audio_prepare = gr.Audio(label="Audio", type="filepath")
|
||||
|
||||
random_sample_prepare.click(
|
||||
fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare]
|
||||
)
|
||||
|
||||
with gr.TabItem("Train Data"):
|
||||
with gr.TabItem("Train Model"):
|
||||
gr.Markdown("""```plaintext
|
||||
The auto-setting is still experimental. Please make sure that the epochs, save per updates, and last per updates are set correctly, or change them manually as needed.
|
||||
The auto-setting is still experimental. Set a large value of epoch if not sure; and keep last N checkpoints if limited disk space.
|
||||
If you encounter a memory error, try reducing the batch size per GPU to a smaller number.
|
||||
```""")
|
||||
with gr.Row():
|
||||
bt_calculate = bt_create = gr.Button("Auto Settings")
|
||||
exp_name = gr.Radio(label="Model", choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"])
|
||||
tokenizer_file = gr.Textbox(label="Tokenizer File")
|
||||
file_checkpoint_train = gr.Textbox(label="Path to the Pretrained Checkpoint")
|
||||
|
||||
with gr.Row():
|
||||
ch_finetune = bt_create = gr.Checkbox(label="Finetune")
|
||||
lb_samples = gr.Label(label="Samples")
|
||||
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
|
||||
bt_calculate = bt_create = gr.Button("Auto Settings")
|
||||
|
||||
with gr.Row():
|
||||
ch_finetune = bt_create = gr.Checkbox(label="Finetune", value=True)
|
||||
tokenizer_file = gr.Textbox(label="Tokenizer File", value="")
|
||||
file_checkpoint_train = gr.Textbox(label="Path to the Pretrained Checkpoint", value="")
|
||||
epochs = gr.Number(label="Epochs")
|
||||
learning_rate = gr.Number(label="Learning Rate", step=0.5e-5)
|
||||
max_grad_norm = gr.Number(label="Max Gradient Norm")
|
||||
num_warmup_updates = gr.Number(label="Warmup Updates")
|
||||
|
||||
with gr.Row():
|
||||
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
||||
learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5)
|
||||
batch_size_type = gr.Radio(
|
||||
label="Batch Size Type",
|
||||
choices=["frame", "sample"],
|
||||
info="frame is calculated as seconds * sampling_rate / hop_length",
|
||||
)
|
||||
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", info="N frames or N samples")
|
||||
grad_accumulation_steps = gr.Number(
|
||||
label="Gradient Accumulation Steps", info="Effective batch size is multiplied by this value"
|
||||
)
|
||||
max_samples = gr.Number(label="Max Samples", info="Maximum number of samples per single GPU batch")
|
||||
|
||||
with gr.Row():
|
||||
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
|
||||
max_samples = gr.Number(label="Max Samples", value=64)
|
||||
|
||||
with gr.Row():
|
||||
grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
|
||||
max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
|
||||
|
||||
with gr.Row():
|
||||
epochs = gr.Number(label="Epochs", value=10)
|
||||
num_warmup_updates = gr.Number(label="Warmup Updates", value=2)
|
||||
|
||||
with gr.Row():
|
||||
save_per_updates = gr.Number(label="Save per Updates", value=300)
|
||||
save_per_updates = gr.Number(
|
||||
label="Save per Updates",
|
||||
info="Save intermediate checkpoints every N updates",
|
||||
minimum=10,
|
||||
)
|
||||
keep_last_n_checkpoints = gr.Number(
|
||||
label="Keep Last N Checkpoints",
|
||||
value=-1,
|
||||
step=1,
|
||||
precision=0,
|
||||
info="-1: Keep all checkpoints, 0: Only save final model_last.pt, N>0: Keep last N checkpoints",
|
||||
info="-1 to keep all, 0 to not save intermediate, > 0 to keep last N",
|
||||
minimum=-1,
|
||||
)
|
||||
last_per_updates = gr.Number(label="Last per Updates", value=100)
|
||||
last_per_updates = gr.Number(
|
||||
label="Last per Updates",
|
||||
info="Save latest checkpoint with suffix _last.pt every N updates",
|
||||
minimum=10,
|
||||
)
|
||||
gr.Radio(label="") # placeholder
|
||||
|
||||
with gr.Row():
|
||||
ch_8bit_adam = gr.Checkbox(label="Use 8-bit Adam optimizer")
|
||||
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "bf16"], value="none")
|
||||
cd_logger = gr.Radio(label="logger", choices=["wandb", "tensorboard"], value="wandb")
|
||||
start_button = gr.Button("Start Training")
|
||||
stop_button = gr.Button("Stop Training", interactive=False)
|
||||
mixed_precision = gr.Radio(label="Mixed Precision", choices=["none", "fp16", "bf16"])
|
||||
cd_logger = gr.Radio(label="Logger", choices=["none", "wandb", "tensorboard"])
|
||||
with gr.Column():
|
||||
start_button = gr.Button("Start Training")
|
||||
stop_button = gr.Button("Stop Training", interactive=False)
|
||||
|
||||
if projects_selelect is not None:
|
||||
(
|
||||
@@ -1651,7 +1624,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
||||
ch_8bit_adam.value = bnb_optimizer_value
|
||||
|
||||
ch_stream = gr.Checkbox(label="Stream Output Experiment", value=True)
|
||||
txt_info_train = gr.Text(label="Info", value="")
|
||||
txt_info_train = gr.Textbox(label="Info", value="")
|
||||
|
||||
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
||||
|
||||
@@ -1718,23 +1691,21 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
||||
fn=calculate_train,
|
||||
inputs=[
|
||||
cm_project,
|
||||
epochs,
|
||||
learning_rate,
|
||||
batch_size_per_gpu,
|
||||
batch_size_type,
|
||||
max_samples,
|
||||
learning_rate,
|
||||
num_warmup_updates,
|
||||
save_per_updates,
|
||||
last_per_updates,
|
||||
ch_finetune,
|
||||
],
|
||||
outputs=[
|
||||
epochs,
|
||||
learning_rate,
|
||||
batch_size_per_gpu,
|
||||
max_samples,
|
||||
num_warmup_updates,
|
||||
save_per_updates,
|
||||
last_per_updates,
|
||||
lb_samples,
|
||||
learning_rate,
|
||||
epochs,
|
||||
],
|
||||
)
|
||||
|
||||
@@ -1744,25 +1715,25 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
||||
|
||||
def setup_load_settings():
|
||||
output_components = [
|
||||
exp_name, # 1
|
||||
learning_rate, # 2
|
||||
batch_size_per_gpu, # 3
|
||||
batch_size_type, # 4
|
||||
max_samples, # 5
|
||||
grad_accumulation_steps, # 6
|
||||
max_grad_norm, # 7
|
||||
epochs, # 8
|
||||
num_warmup_updates, # 9
|
||||
save_per_updates, # 10
|
||||
keep_last_n_checkpoints, # 11
|
||||
last_per_updates, # 12
|
||||
ch_finetune, # 13
|
||||
file_checkpoint_train, # 14
|
||||
tokenizer_type, # 15
|
||||
tokenizer_file, # 16
|
||||
mixed_precision, # 17
|
||||
cd_logger, # 18
|
||||
ch_8bit_adam, # 19
|
||||
exp_name,
|
||||
learning_rate,
|
||||
batch_size_per_gpu,
|
||||
batch_size_type,
|
||||
max_samples,
|
||||
grad_accumulation_steps,
|
||||
max_grad_norm,
|
||||
epochs,
|
||||
num_warmup_updates,
|
||||
save_per_updates,
|
||||
keep_last_n_checkpoints,
|
||||
last_per_updates,
|
||||
ch_finetune,
|
||||
file_checkpoint_train,
|
||||
tokenizer_type,
|
||||
tokenizer_file,
|
||||
mixed_precision,
|
||||
cd_logger,
|
||||
ch_8bit_adam,
|
||||
]
|
||||
return output_components
|
||||
|
||||
@@ -1782,19 +1753,23 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
||||
|
||||
with gr.TabItem("Test Model"):
|
||||
gr.Markdown("""```plaintext
|
||||
SOS: Check the use_ema setting (True or False) for your model to see what works best for you. use seed -1 from random
|
||||
Check the use_ema setting (True or False) for your model to see what works best for you. Set seed to -1 for random.
|
||||
```""")
|
||||
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
||||
exp_name = gr.Radio(
|
||||
label="Model", choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"], value="F5TTS_v1_Base"
|
||||
)
|
||||
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
|
||||
|
||||
with gr.Row():
|
||||
nfe_step = gr.Number(label="NFE Step", value=32)
|
||||
speed = gr.Slider(label="Speed", value=1.0, minimum=0.3, maximum=2.0, step=0.1)
|
||||
seed = gr.Number(label="Seed", value=-1, minimum=-1)
|
||||
seed = gr.Number(label="Random Seed", value=-1, minimum=-1)
|
||||
remove_silence = gr.Checkbox(label="Remove Silence")
|
||||
|
||||
ch_use_ema = gr.Checkbox(label="Use EMA", value=True)
|
||||
with gr.Row():
|
||||
ch_use_ema = gr.Checkbox(
|
||||
label="Use EMA", value=True, info="Turn off at early stage might offer better results"
|
||||
)
|
||||
cm_checkpoint = gr.Dropdown(
|
||||
choices=list_checkpoints, value=checkpoint_select, label="Checkpoints", allow_custom_value=True
|
||||
)
|
||||
@@ -1802,20 +1777,20 @@ SOS: Check the use_ema setting (True or False) for your model to see what works
|
||||
|
||||
random_sample_infer = gr.Button("Random Sample")
|
||||
|
||||
ref_text = gr.Textbox(label="Ref Text")
|
||||
ref_audio = gr.Audio(label="Audio Ref", type="filepath")
|
||||
gen_text = gr.Textbox(label="Gen Text")
|
||||
ref_text = gr.Textbox(label="Reference Text")
|
||||
ref_audio = gr.Audio(label="Reference Audio", type="filepath")
|
||||
gen_text = gr.Textbox(label="Text to Generate")
|
||||
|
||||
random_sample_infer.click(
|
||||
fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio]
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
txt_info_gpu = gr.Textbox("", label="Device")
|
||||
seed_info = gr.Text(label="Seed :")
|
||||
check_button_infer = gr.Button("Infer")
|
||||
txt_info_gpu = gr.Textbox("", label="Inference on Device :")
|
||||
seed_info = gr.Textbox(label="Used Random Seed :")
|
||||
check_button_infer = gr.Button("Inference")
|
||||
|
||||
gen_audio = gr.Audio(label="Audio Gen", type="filepath")
|
||||
gen_audio = gr.Audio(label="Generated Audio", type="filepath")
|
||||
|
||||
check_button_infer.click(
|
||||
fn=infer,
|
||||
@@ -1838,18 +1813,20 @@ SOS: Check the use_ema setting (True or False) for your model to see what works
|
||||
bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
|
||||
cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
|
||||
|
||||
with gr.TabItem("Reduce Checkpoint"):
|
||||
with gr.TabItem("Prune Checkpoint"):
|
||||
gr.Markdown("""```plaintext
|
||||
Reduce the model size from 5GB to 1.3GB. The new checkpoint can be used for inference or fine-tuning afterward, but it cannot be used to continue training.
|
||||
Reduce the Base model size from 5GB to 1.3GB. The new checkpoint file prunes out optimizer and etc., can be used for inference or finetuning afterward, but not able to resume pretraining.
|
||||
```""")
|
||||
txt_path_checkpoint = gr.Text(label="Path to Checkpoint:")
|
||||
txt_path_checkpoint_small = gr.Text(label="Path to Output:")
|
||||
ch_safetensors = gr.Checkbox(label="Safetensors", value="")
|
||||
txt_info_reduse = gr.Text(label="Info", value="")
|
||||
reduse_button = gr.Button("Reduce")
|
||||
txt_path_checkpoint = gr.Textbox(label="Path to Checkpoint:")
|
||||
txt_path_checkpoint_small = gr.Textbox(label="Path to Output:")
|
||||
with gr.Row():
|
||||
ch_save_ema = gr.Checkbox(label="Save EMA checkpoint", value=True)
|
||||
ch_safetensors = gr.Checkbox(label="Save with safetensors format", value=True)
|
||||
txt_info_reduse = gr.Textbox(label="Info", value="")
|
||||
reduse_button = gr.Button("Prune")
|
||||
reduse_button.click(
|
||||
fn=extract_and_save_ema_model,
|
||||
inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_safetensors],
|
||||
fn=prune_checkpoint,
|
||||
inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_save_ema, ch_safetensors],
|
||||
outputs=[txt_info_reduse],
|
||||
)
|
||||
|
||||
|
||||
@@ -4,70 +4,71 @@ import os
|
||||
from importlib.resources import files
|
||||
|
||||
import hydra
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from f5_tts.model import CFM, DiT, Trainer, UNetT
|
||||
from f5_tts.model import CFM, Trainer
|
||||
from f5_tts.model.dataset import load_dataset
|
||||
from f5_tts.model.utils import get_tokenizer
|
||||
|
||||
|
||||
os.chdir(str(files("f5_tts").joinpath("../.."))) # change working directory to root of project (local editable)
|
||||
|
||||
|
||||
@hydra.main(version_base="1.3", config_path=str(files("f5_tts").joinpath("configs")), config_name=None)
|
||||
def main(cfg):
|
||||
tokenizer = cfg.model.tokenizer
|
||||
mel_spec_type = cfg.model.mel_spec.mel_spec_type
|
||||
exp_name = f"{cfg.model.name}_{mel_spec_type}_{cfg.model.tokenizer}_{cfg.datasets.name}"
|
||||
def main(model_cfg):
|
||||
model_cls = hydra.utils.get_class(f"f5_tts.model.{model_cfg.model.backbone}")
|
||||
model_arc = model_cfg.model.arch
|
||||
tokenizer = model_cfg.model.tokenizer
|
||||
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
|
||||
|
||||
exp_name = f"{model_cfg.model.name}_{mel_spec_type}_{model_cfg.model.tokenizer}_{model_cfg.datasets.name}"
|
||||
wandb_resume_id = None
|
||||
|
||||
# set text tokenizer
|
||||
if tokenizer != "custom":
|
||||
tokenizer_path = cfg.datasets.name
|
||||
tokenizer_path = model_cfg.datasets.name
|
||||
else:
|
||||
tokenizer_path = cfg.model.tokenizer_path
|
||||
tokenizer_path = model_cfg.model.tokenizer_path
|
||||
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
||||
|
||||
# set model
|
||||
if "F5TTS" in cfg.model.name:
|
||||
model_cls = DiT
|
||||
elif "E2TTS" in cfg.model.name:
|
||||
model_cls = UNetT
|
||||
wandb_resume_id = None
|
||||
|
||||
model = CFM(
|
||||
transformer=model_cls(**cfg.model.arch, text_num_embeds=vocab_size, mel_dim=cfg.model.mel_spec.n_mel_channels),
|
||||
mel_spec_kwargs=cfg.model.mel_spec,
|
||||
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=model_cfg.model.mel_spec.n_mel_channels),
|
||||
mel_spec_kwargs=model_cfg.model.mel_spec,
|
||||
vocab_char_map=vocab_char_map,
|
||||
)
|
||||
|
||||
# init trainer
|
||||
trainer = Trainer(
|
||||
model,
|
||||
epochs=cfg.optim.epochs,
|
||||
learning_rate=cfg.optim.learning_rate,
|
||||
num_warmup_updates=cfg.optim.num_warmup_updates,
|
||||
save_per_updates=cfg.ckpts.save_per_updates,
|
||||
keep_last_n_checkpoints=getattr(cfg.ckpts, "keep_last_n_checkpoints", -1),
|
||||
checkpoint_path=str(files("f5_tts").joinpath(f"../../{cfg.ckpts.save_dir}")),
|
||||
batch_size=cfg.datasets.batch_size_per_gpu,
|
||||
batch_size_type=cfg.datasets.batch_size_type,
|
||||
max_samples=cfg.datasets.max_samples,
|
||||
grad_accumulation_steps=cfg.optim.grad_accumulation_steps,
|
||||
max_grad_norm=cfg.optim.max_grad_norm,
|
||||
logger=cfg.ckpts.logger,
|
||||
epochs=model_cfg.optim.epochs,
|
||||
learning_rate=model_cfg.optim.learning_rate,
|
||||
num_warmup_updates=model_cfg.optim.num_warmup_updates,
|
||||
save_per_updates=model_cfg.ckpts.save_per_updates,
|
||||
keep_last_n_checkpoints=model_cfg.ckpts.keep_last_n_checkpoints,
|
||||
checkpoint_path=str(files("f5_tts").joinpath(f"../../{model_cfg.ckpts.save_dir}")),
|
||||
batch_size_per_gpu=model_cfg.datasets.batch_size_per_gpu,
|
||||
batch_size_type=model_cfg.datasets.batch_size_type,
|
||||
max_samples=model_cfg.datasets.max_samples,
|
||||
grad_accumulation_steps=model_cfg.optim.grad_accumulation_steps,
|
||||
max_grad_norm=model_cfg.optim.max_grad_norm,
|
||||
logger=model_cfg.ckpts.logger,
|
||||
wandb_project="CFM-TTS",
|
||||
wandb_run_name=exp_name,
|
||||
wandb_resume_id=wandb_resume_id,
|
||||
last_per_updates=cfg.ckpts.last_per_updates,
|
||||
log_samples=True,
|
||||
bnb_optimizer=cfg.optim.bnb_optimizer,
|
||||
last_per_updates=model_cfg.ckpts.last_per_updates,
|
||||
log_samples=model_cfg.ckpts.log_samples,
|
||||
bnb_optimizer=model_cfg.optim.bnb_optimizer,
|
||||
mel_spec_type=mel_spec_type,
|
||||
is_local_vocoder=cfg.model.vocoder.is_local,
|
||||
local_vocoder_path=cfg.model.vocoder.local_path,
|
||||
is_local_vocoder=model_cfg.model.vocoder.is_local,
|
||||
local_vocoder_path=model_cfg.model.vocoder.local_path,
|
||||
model_cfg_dict=OmegaConf.to_container(model_cfg, resolve=True),
|
||||
)
|
||||
|
||||
train_dataset = load_dataset(cfg.datasets.name, tokenizer, mel_spec_kwargs=cfg.model.mel_spec)
|
||||
train_dataset = load_dataset(model_cfg.datasets.name, tokenizer, mel_spec_kwargs=model_cfg.model.mel_spec)
|
||||
trainer.train(
|
||||
train_dataset,
|
||||
num_workers=cfg.datasets.num_workers,
|
||||
num_workers=model_cfg.datasets.num_workers,
|
||||
resumable_with_seed=666, # seed for shuffling dataset
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user